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CHAPTER 1

Introduction
1.1  The Purpose of the Book
Have you ever wondered how your computer works? I mean, how it really works, 

underneath the hood? I’ve found that many people, including professional computer 

programmers, actually have no idea how computers operate at their most fundamental 

level.

You need to read this book whether or not you ever plan on writing assembly 

language code. If you plan on programming computers, you need to read this book 

in order to demystify the operation of your most basic tool—the processor itself. I’ve 

worked with a lot of programmers over the years. While you can do good work only 

knowing high-level languages, I have found that there is a glass ceiling of effectiveness 

that awaits programmers who haven’t learned the machine’s own language.

Learning assembly language is about learning how the processor itself thinks about 

your code. It is about gaining the mind of the machine. Even if you never use assembly 

language in practice, the depth of understanding you will receive by learning assembly 

language will make your time and effort worthwhile. You will understand at a more 

visceral level the various trade-offs that are made with different programming languages 

and why certain high-level operations may be faster than others and get an overall sense 

of what your computer is really doing.

Additionally, while the practical uses of assembly language are getting fewer and 

further between, there are still many places where assembly language knowledge 

is needed. Compiler writers, kernel developers, and high-performance library 

implementers all utilize assembly language to some degree and probably always will. 

Additionally, embedded developers, because of resource constraints, often program in 

assembly language as well.

https://doi.org/10.1007/978-1-4842-7437-8_1#DOI
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1.2  Who Is This Book For?
This book is for programmers at any level. This book should work as your first or your 

fortieth programming book. Some later chapters will assume some familiarity with 

various programming languages, but the core content is written so that anyone can pick 

it up and read it.

I generally assume some working knowledge of Linux and the command 

line. However, if you haven’t used the command line, Appendix B will give a brief 

introduction.

If you don’t use Linux as your primary operating system, that’s okay, too. I’ve built a 

Docker image that is customized to work with this book, and Appendix A will help you 

get started using it.

You only need to know the basics—how to run programs on the command line, how 

to edit text files, etc. If you have done any work at all on the command line (or have read 

and worked through Appendix B), you probably know everything that you need to get 

started. If you haven’t, there are numerous tutorials on the Internet about getting started 

on the command line. You don’t need to be an advanced systems administrator. If you 

know how to change location, edit files, and create directories, that’s all the skills you 

actually need.

1.3  Why Learn Assembly Language?
In the modern age of modern programming languages where a single line of code can 

replace hundreds of lines of assembly language, why bother to study assembly language 

at all? The fact is assembly language is how your computer runs. Any good craftsman 

knows how their tools work, and computer programming is no different. Knowing your 

tools helps you get the most out of them.

The biggest advantage is one that is hard to point to concretely—it is simply 

understanding how the pieces fit together. Some people are perfectly happy not knowing 

how the tools that they work with actually function. However, those people often wind 

up being mystified by certain problems and then have to go to someone who actually 

knows how these tools function to figure it out. Knowing assembly language makes you 

the guru who understands how everything fits together.

Of course, there are also more practical reasons I can point to. Understanding 

how many security exploits work relies on understanding how the computer is 
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actually operating. So, if your goal is to do computer security work, in order to actually 

understand how hackers are manipulating the system, you have to know how the system 

works in general.

Some people learn assembly language so that they can make faster programs. While 

modern optimizing compilers are really great at making fast assembly language, since 

they are computer programs, they can only operate according to fixed rules and axioms. 

Human creativity, however, allows for the creation of new ideas which go beyond what 

computers are programmed to do.1

There are other cases where assembly language is actually simpler for programming. 

For many embedded processors and applications, programming in a high-level language 

is actually harder than just programming in assembly language directly. If you are doing 

low-level work with hardware working with individual bits and bytes, then assembly 

language oftentimes winds up being more straightforward and easy to program in than a 

high-level language.2

There are also many areas of modern programming on standard computers which 

must happen in assembly language, or at least require a background knowledge of it. 

Compilers, new programming languages, operating system code, drivers, and other 

system-level features all require either direct assembly language programming or a 

background knowledge of it.

Again, I will say that, for me, the greatest benefit of learning assembly language 

programming is simply gaining a better mental model for what is happening in the 

computer when I’m programming. When people describe security exploits, I can 

understand what they are talking about. When people describe why some programming 

feature “costs” too much in terms of execution speed, I have a mental framework to 

understand why. When low-level issues arise, I have a feel for what sorts of things might 

be causing problems.

1  The optimal methodology is actually to combine both humans and computers and let the 
computer apply the fixed rules and let human creativity see where they can improve upon them.

2  Note that most embedded processors will use a different assembly language than the one in 
this book. Nevertheless, I think that you will find learning the assembly language that is on your 
own computer beneficial and that most of the ideas transfer easily to other processors, even 
if the instructions are a little different. Embedded processors come with a whole host of their 
own difficulties, so having mastery of assembly language in general before trying to program an 
embedded processor is definitely worthwhile.

Chapter 1  IntroduCtIon
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1.4  A Note to New Programmers
If you are reading this book and you are new to programming, I want to offer a special 

word to you. While I think you have made a good choice using this book to learn 

programming, I want you to know that it may not be as exciting as other programming 

languages. Reading this book will help you to gain the understanding of the processor to 

make you great at programming. Because you know all the things the computer is doing 

under the hood, you will have insights when doing more exciting types of programming 

that others won’t have.

However, assembly language itself is not incredibly exciting to write. You are 

literally doing everything by hand, so even doing simple things tends to take a long 

time. The purpose of higher-level programming languages is to speed up the process 

of writing code. What I don’t want you to do is to read this book and then think, “Oh 

my! Programming takes so much work!” Remember, most of us got into this business 

to automate things, and that includes automating the task of programming. Many 

experienced programmers can pack a lot of juice into even a single line of code in  

a high- level language.

If you don’t know, programming languages are generally grouped into “high- 

level” and “low-level” languages. Higher-level languages are focused more on making 

code that matches more closely the problem you are trying to solve, while lower-level 

languages are focused on making code that more closely follows the computer’s own 

mode of operation. Assembly language is the almost-lowest-level language there is. The 

instructions in assembly language exactly match the instructions that the processor 

executes. The only thing lower than assembly language is writing machine opcodes (see 

Appendix K if that is of interest to you). As you will see, computers translate everything 

into numbers. That includes your programs. However, it would be hard to read and 

manipulate a program if it were just numbers. Therefore, almost everyone writes the 

actual code in assembly language and then uses a program (called an assembler) to 

translate that into machine code. Assembly language is basically human-readable 

machine code.

That is why I say that learning assembly language will give you insight into 

the operation of the computer. Unlike other programming languages, when you 

learn assembly language, you are learning to program the computer on its own 

level. I’ve generally found that it is somewhat dangerous to automate a process you 

don’t understand, especially for someone who is trying to be an expert. An expert 

mathematician will certainly use software to aid their thinking, but only because they 
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know what the software is automating. An expert race car driver will certainly use their 

car’s steering system to maneuver, but they will still know how the car is operating 

underneath. This helps them understand how decisions they make at the wheel will 

affect various system components such as the tread on the tires or gasoline usage. As a 

casual driver, these things aren’t important to me, so my understanding generally stops 

at the steering wheel and the gas tank. However, if I planned on being a performance 

race car driver, even if I never maintained the car myself, even if I had a whole crew that 

did that for me, I would still be well served to understand the car at its deepest level in 

order to get the most out of it at critical junctures.

Different people have different ideas, but, if you are willing, I definitely suggest 

starting with assembly language. It will cause you to think differently about problems 

and computers and ultimately will shape your thinking to more closely match what is 

required for effective computer programming.

1.5  Types of Assembly Language
Note that there is not a single type of machine language for all computers, although 

most PCs share the same machine language. Machine languages are usually divided 

up by instruction set architecture (ISA). The ISA refers to the set of instructions that 

are allowed by the computer. Many, many different computers share the same ISA, 

even when built by different manufacturers. Almost all modern PCs use the x86-64 ISA 

(sometimes referred to as AMD64). Older PCs use the x86 ISA (this is the 32-bit version 

of x86-64). Many cell phones use a variation of the ARM ISA. Finally, some older game 

consoles (and really old Macs) use the PowerPC ISA. Many other ISAs exist, but are 

usually restricted to chips that have very specialized uses, such as in embedded devices.

The ISA covered in this book is the x86-64 ISA. This was developed by AMD as a 

64-bit extension to the 32-bit x86 ISA developed by Intel. It is now standard in PC-based 

systems and most servers.

In addition, since assembly language uses human-readable symbols that translate 

into machine code, different groups have implemented assembly language using 

different syntaxes. There is no difference in the final machine code, but the different 

syntaxes have different looks. The two main syntaxes are NASM syntax (sometimes 

called Intel syntax) and AT&T (sometimes called GAS) syntax. Again, there is no 

difference in functionality, only in look. We will use AT&T syntax here, because this is 

the syntax used both in the Linux kernel and as the default syntax by the GNU Compiler 
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Collection (GCC) toolchain. If you need to use NASM syntax for some reason, a quick 

translation guide between the two syntaxes is available in Appendix D.

Finally, different operating systems utilize the chips in different ways. The focus here 

will be on 64-bit Linux-based operating systems. You will need to be running a 64-bit 

Linux-based operating system to use this book. However, as noted, if you are not on 

Linux, you can use the Docker setup in Appendix A to run a compatible Linux instance 

inside a 64-bit Mac or a 64-bit PC.

1.6  Structure of This Book
This book is arranged into three basic parts. This chapter and the next are introductory 

material before the main parts of the book. They are here to get you started, but are not 

really about how to program in assembly language.

Part I of the book focuses on the basics of assembly language itself. The programs 

are not very exciting, because assembly language itself doesn’t do much except move 

data around and process it. Because we are limiting ourselves to assembly language 

itself, the results of these programs are always numbers. However, the simple nature 

of the programs will help you get a good feel for assembly language and how it works 

before trying more complicated things such as input/output. New instructions will still 

be provided in subsequent parts of the book, but you should have a pretty good feel for 

assembly language by the time you finish this part of the book. Additionally, most of 

what you learn in this part is transferable to any other operating system running on a 

CPU with the x86-64 instruction set.

Part II of the book goes into detail on how programs interact with the operating 

system. This includes things like displaying to the screen, reading and writing files, and 

even a bit of user input. It also includes some system management features, such as how 

to interact with system libraries and how to request more memory from the operating 

system. This part is very specific to the Linux operating system. While most operating 

systems provide similar facilities, the specifics of how to use them are unique to the 

particular operating system you are using.

Part III of the book discusses how programming languages get implemented at the 

lowest level. Being an introductory book, the goal here isn’t to teach you the best way to 

implement programming languages, but rather to give you a feel for the kinds of things 

that the computer is doing under the hood in various programming languages. How 

would someone implement feature X, Y, or Z? If modern programming languages amaze 
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and mystify you, Part III should help to make them less enigmatic. Part III is not about a 

particular programming language, but will guide you through various types of language 

features that you may find in any number of programming languages.

If this is your first book on computer programming, my recommendation is to 

stop after Part II and then come back and read Part III after you have gained some 

experience with other programming languages. This will provide the needed context for 

understanding Part III of the book.

Part IV of the book has several appendixes that cover various topics that are 

important to know, but don’t quite fit anywhere within the main text. As you are 

interested, take a look at the appendixes to find short introductions to various topics.

The best way to learn programming is by doing. I would suggest programming every 

example written in the text yourself to make sure that you fully understand what is 

occurring. Additionally, every chapter ends with a list of exercises. Those exercises are 

intended to help you make practical use of what you know and give you experience in 

thinking about programming on the assembly language level.
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CHAPTER 2

The Truth About Computers
I’m going to now share with you the shocking truth about computers—computers are 

really, really stupid. Many people get enamored with these devices and start to believe 

things about computers that just aren’t true. They may see some amazing graphics, some 

fantastic data manipulation, and some outstanding artificial intelligence and assume 

that there is something amazing happening inside the computer. In truth, there is 

something amazing, but it isn’t the intelligence of the computer.

2.1  What Computers Can Do
Computers can actually do very few things. Now, the modern computer instruction set 

is fairly rich, but even as the number of instructions that a computer knows increases 

in abundance, these are all primarily either (a) faster versions of something you could 

already do, (b) computer security related, or (c) hardware interface related. Ultimately, 

as far as computational power goes, all computers boil down to the same basic 

instructions.

In fact, one computer architecture, invented by Farhad Mavaddat and Behrooz 

Parham, only has one instruction, yet can still do any computation that any other 

computer can do.1

So what is it that computers can do computationally? Computers can

• Do basic integer arithmetic

• Do memory access

1 For those curious, the instruction is “subtract and branch if negative.” If you don’t know 
what that means, it will make a lot more sense by the time you finish this book. If you want 
to know more about this computer, the paper is “URISC: The Ultimate Reduced Instruction 
Set Computer” in the Journal of Electrical Engineering Education, volume 25. These sorts of 
computers are known today as OISC systems (“one instruction set computers”).

https://doi.org/10.1007/978-1-4842-7437-8_2#DOI
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• Compare values

• Change the order of instruction execution based on a previous 

comparison

If computers are this limited, then how are they able to do the amazing things that 

they do? The reason that computers can accomplish such spectacular feats is that these 

limitations allow hardware makers to make the operations very fast. Most modern 

desktop computers can process over a billion instructions every second. Therefore, what 

programmers do is leverage this massive pipeline of computation in order to combine 

simplistic computations into a masterpiece.

However, at the end of the day, all that a computer is really doing is really fast 

arithmetic. In the movie Short Circuit, two of the main characters have this to say about 

computers—“It’s a machine… It doesn’t get happy. It doesn’t get sad. It doesn’t laugh 

at your jokes. It just runs programs.” This is true of even the most advanced artificial 

intelligence. In fact, the failure to understand this concept lies at the core of the present 

misunderstanding about the present and future of artificial intelligence.2

2.2  Instructing a Computer
The key to programming is to learn to rethink problems in such simple terms that they 

can be expressed with simple arithmetic. It is like teaching someone to do a task, but 

they only understand the most literal, exact instructions and can only do arithmetic.

There is an old joke about an engineer whose wife told him to go to the store. She said, 

“Buy a gallon of milk. If they have eggs, get a dozen.” The engineer returned with 12 gallons 

of milk. His wife asked, “Why 12 gallons?” The engineer responded, “They had eggs.” The 

punchline of the joke is that the engineer had over-literalized his wife’s statements. Obviously, 

she meant that he should get a dozen eggs, but that requires context to understand.

The same thing happens in computer programming. The computer will hyper- literalize 

every single thing you type. You must expect this. Most bugs in computer programs come 

from programmers not paying enough attention to the literal meaning of what they are 

asking the computer to do. The computer can’t do anything except the literal meaning.

2 For more information about this issue, see Erik Larson’s book, The Myth of Artificial Intelligence: 
Why Computers Can’t Think the Way We Do. I’ve also written about this some—see my article 
“Why I Doubt That AI Can Match the Human Mind,” available at https://mindmatters.
ai/2019/02/why-i-doubt-that-ai-can-match-the-human-mind/.
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Learning to program in assembly is helpful because it is more obvious to the 

programmer the hyper-literalness of how the computer will interpret the program. 

Nonetheless, when tracking down bugs in any program, the most important thing to do 

is to track what the code is actually saying, not what we meant by it.

Similarly, when programming, the programmer has to specify all of the possible 

contingencies, how to check for them, and what should be done about them. Imagine we 

were programming a robot to shop for us. Let us say that we gave it the following program:

 1. Go to the store.

 2. If the store has corn, buy the corn and return home.

 3. If the store doesn’t have corn, choose a store that you haven’t 

visited yet and repeat the process.

That sounds pretty specific. The problem is, what happens if no one has corn? We 

haven’t specified to the robot any other way to finish the process. Therefore, if there was 

a corn famine or a corn recall, the robot will continue searching for a new store forever 

(or until it runs out of electricity).

When doing low-level programming, the consequences that you have to prepare for 

multiply. If you want to open a file, what happens if the file isn’t there? What happens if 

the file is there, but you don’t have access to it? What if you can read it but can’t write to 

it? What if the file is across a network, and there is a network failure while trying to read it?

The computer will only do exactly what you tell it to. Nothing more, nothing less. 

That proposition is equally freeing and terrifying. The computer doesn’t know or care if 

you programmed it correctly, but will simply do what you actually told it to do.

2.3  Basic Computer Organization
Before we go further, I want to be sure you have a basic awareness of how a computer is 

organized conceptually. Computers consist of the following basic parts:

• The CPU (also referred to as the processor or microprocessor)

• Working memory

• Permanent storage

• Peripherals

• System bus
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Let’s look at each of these in turn.

The CPU (central processing unit) is the computational workhorse of your computer. 

The CPU itself is divided into components, but we will deal with that in Section 2.7. The 

CPU handles all computation and essentially coordinates all of the tasks that occur in 

a computer. Many computers have more than one CPU, or they have one CPU that has 

multiple “cores,” each of which is more or less acting like a distinct CPU. Additionally, 

each core may be hyperthreaded, which means the core itself to some extent acts as 

more than one core. The permanent storage is your hard drive(s), whether internal or 

external, plus USB sticks, or whatever else you store files on. This is distinct from the 

working memory, which is usually referred to as RAM, which stands for “random access 

memory.”3 The working memory is usually wiped out when the computer gets turned off.

Everything else connected to your computer gets classified as a peripheral. 
Technically, permanent storage devices are peripherals, too, but they are sufficiently 

foundational to how computers work I treated them as their own category. Peripherals 

are how the computer communicates with the world. This includes the graphics card, 

which transmits data to the screen; the network card, which transmits data across the 

network; the sound card, which translates data into sound waves; the keyboard and 

mouse, which allow you to send input to the computer; etc.

Everything that is connected to the CPU connects through a bus, or system bus. 

Buses handle communication between the various components of the computer, usually 

between the CPU and other peripherals and between the CPU and main memory. 

The speed and engineering of the various computer buses is actually critical to the 

computer’s performance, but their operation is sufficiently technical and behind the 

scenes that most people don’t think about it. The main memory often gets its own bus 

(known as the front-side bus) to make sure that communication is fast and unhindered.

Physically, most of these components are present on a computer’s motherboard, 

which is the big board inside your desktop or laptop. The motherboard often has other 

functions as well, such as controlling fans, interfacing with the power button, etc.

3 It’s called random access memory because you can easily access any given part of the memory. 
This was in comparison to disks or tape, in which you had to physically move the read/write 
head to the right spot before you could read the data. Modern solid state drives are essentially 
random access as well, but we still use the term RAM to refer to the main memory, not the disks.
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2.4  How Computers See Data
As mentioned in the introduction, computers translate everything into numbers. 

To understand why, remember that computers are just electronic devices. That is, 

everything that happens in a computer is ultimately reducible to the flow of electricity. 

In order to make that happen, engineers had to come up with a way to represent things 

with flows of electricity.

What they came up with is to have different voltages represent different symbols. 

Now, you could do this in a lot of ways. You could have 1 volt represent the number 1, 

2 volts represent the number 2, etc. However, devices have a fixed voltage, so we would 

have to decide ahead of time how many digits we want to allow on the signal and be sure 

sufficient voltage is available.

To simplify things, engineers ultimately decided to only make two symbols. These 

can be thought of as “on” (voltage present) and “off” (no voltage present), “true” 

and “false,” or “1” and “0.” Limiting to just two symbols greatly simplifies the task of 

engineering computers.

You may be wondering how these limited symbols add up to all the things we store in 

computers. First, let’s start with ordinary numbers. You may be thinking, if you only have 

“0” and “1,” how will we represent numbers with other digits, like 23? The interesting 

thing is that you can build numbers with any number of digits. We use ten digits (0–9), 

but we didn’t have to. The Ndom language uses six digits. Some use as many as 27.

Since the computer uses two digits, the system is known as binary. Each digit in the 

binary system is called a bit, which simply means “binary digit.” To understand how to 

count in binary, let’s think a little about how we count in our own system, decimal. We 

start with 0, and then we progress through each symbol until we hit the end of our list of 

symbols (i.e., 9). Then what happens? The next digit to the left increments by one, and 

the ones place goes back to zero. As we continue counting, we increment the rightmost 

digit over and over, and, when it goes past the last symbol, we keep flipping it back to 

zero and incrementing the next one to the left. If that one flips, we again increment the 

one to the left of that digit, and so forth.

Counting in binary is exactly the same, except we just run up against the end of our 

symbol list much more quickly. It starts at 0, then goes to 1, and then, hey, we are at the 

end of our symbols! So that means that the number to the left gets incremented (there 

is always imaginary zeroes to the left of the digits we have) and our rightmost digit flips 
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back to zero. So that means that after 0 and 1 is 10! So, counting in binary looks like this 

(the numbers on the left are the equivalent decimal numbers):

0. 0

1. 1

2.  10 (we overflowed the ones position, so we increment the next 

digit to the left and the ones position starts over at zero)

3. 11

4.  100 (we overflowed the ones position, so we increment the next 

digit to the left, but that flips that one to zero, so we increment 

the next one over)

5. 101

6. 110

7. 111

8. 1000

9. 1001

10. 1010

11. 1011

12. 1100

As you can see, the procedure is the same. We are just working with fewer symbols.

Now, in computing, these values have to be stored somewhere. And, while in our 

imagination, we can imagine any number of zeroes to the left (and therefore our system 

can accommodate an infinite number of values), in physical computers, all of these 

numbers have to be stored in circuits somewhere. Therefore, the computer engineers 

group together bits into fixed sizes.

A byte is a grouping of 8 bits together. A byte can store a number between 0 and 255. 

Why 255? Because that is the value of 8 bits all set to “1”: 11111111.

Single bytes are pretty limiting. However, for historic reasons, this is the way that 

computers are organized, at least conceptually. When we talk about how many gigabytes 

of RAM a computer has, we are asking how many billions (giga-) of bytes (groups of 8 

bits together) the computer has in its working memory (which is what RAM is).
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Most computers, however, fundamentally use larger groupings. When we talk about 

a 32-bit or a 64-bit computer, we are talking about how the number of bits that the 

computer naturally groups together when dealing with numbers. A 64-bit computer, 

then, can naturally handle numbers as large as 64 bits. This is a number between 0 and 

18,446,744,073,709,551,615.

Now, ultimately, you can choose any size of number you want. You can have bigger 

numbers, but, generally, the processor is not predisposed to working with the numbers 

in that way. What it means to have a 64-bit computer is that the computer can, in a 

single instruction, add together two 64-bit numbers. You can still add 64-bit numbers 

with a 32-bit or even an 8-bit computer; it just takes more instructions. For instance, on 

a 32-bit computer, you could split the 64-bit number up into two pieces. You then add 

the rightmost 32 bits and then add the leftmost 32 bits (and account for any carrying 

between them).

Note that even though computers store numbers as bits, we rarely refer to the 

numbers in binary form unless we have a specific reason. However, knowing that they 

are bits arranged into bytes (or larger groupings) helps us understand certain limitations 

of computers. Oftentimes, you will find values in computing that are restricted to the 

values 0–255. If you see this happen, you can think, “Oh, that probably means they are 

storing the value in a single byte.”

2.5  It’s Not What You Have, It’s How You Use It
So, hopefully by now you see how computers store numbers. But don’t computers store 

all sorts of other types of data, too? Aren’t computers storing and processing words, 

images, sounds, and, for that matter, negative or even non-integer numbers?

This is true, but it is storing all of these things as numbers. For instance, to store 

letters, the letters are actually converted into numbers using ASCII (American Standard 

Code for Information Interchange) or Unicode codes (which we will discuss more later). 

Each character gets a value, and words are stored as consecutive values.

Images are also values. Each pixel on your screen is represented by a number 

indicating the color to display. Sound waves are stored as a series of numbers.

So how does the computer know which numbers are which? Fundamentally, 

the computer doesn’t. All of these values look exactly the same when stored in your 

computer—they are just numbers.

Chapter 2  the truth about Computers



16

What makes them letters or numbers or images or sounds is how they are used. If I 

send a number to the graphics card, then it is a color. If I add two numbers, then they are 

numbers. If I store what you type, then those numbers are letters. If I send a number to 

the speaker, then it is a sound. It is the burden of the programmer to keep track of which 

numbers mean which things and to treat them accordingly.

This is why files have extensions like .docx, .png, .mov, or .xlsx. These extensions 

tell the computer how to interpret what is in the file. These files are themselves just long 

strings of numbers. Programs simply read the filename, look at the extension, and use 

that to know how to use the numbers stored inside.

There’s nothing preventing someone from writing a program that takes a word 

processing file and treating the numbers as pixel colors and sending them to the screen 

(it usually looks like static) or sending them to the speakers (it usually sounds like 

static or buzzing). But, ultimately, what makes computer programs useful is that they 

recognize how the numbers are organized and treat them in an appropriate manner.

If this sounds complicated, don’t worry about it. We will start off with very simple 

examples in the next chapter.

What’s even more amazing, though, is that the computer’s instructions are 

themselves just numbers as well. This is why your computer’s memory can be used to 

store both your files and your programs. Both are just special sequences of numbers, so 

we can store them all using the same type of hardware. Just like the numbers in the file 

are written in a way that our software can interpret them, the numbers in our programs 

are written in a special way so that the computer hardware can interpret them properly.

2.6  Referring to Memory
Since a computer has billions of bytes of memory (or more), how do we figure out which 

specific piece of memory we are referring to? This is a harder question than it sounds 

like. For the moment, I will give you a simplified understanding which we will build 

upon later on.

Have you ever been to a post office and seen an array of post-office boxes? Or been to 

a bank and seen a whole wall of safety deposit boxes? What do they look like?

Usually, each box is the same size, and each one has a number on it. These numbers 

are arranged sequentially. Therefore, box 2345 is right next to box 2344. I can easily find 

any box by knowing the number on the outside of the box.
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This is how memory is usually organized. You can think of memory as boxes, where 

each box is 1 byte big. Each memory box has an address, which tells the computer how 

to find it. I can ask for the byte that is at address 279,935 or at address 2,341,338. If I know 

the address, I can go find the value in that location. Because they are bytes, each value 

will be between 0 and 255. Figure 2-1 gives a visual for what this looks like.

Now, since we are on 64-bit computers, we can actually load bigger values. We will 

typically be loading 8 bytes at a time. So, instead of asking for a single byte, we will be 

asking for 8 bytes, starting with the one at the given address. So if we load from address 

279,935, we will get all of the bytes from address 279,935 to 279,942.

Different size values have various names on the x86-64 platform. These names come 

from the fact that the ancestor of the x86-64 was a 16-bit processor. Typical sizes include

• 1 byte (8 bits): Typically just referred to as a byte

• 2 bytes (16 bits): Known as a “word” or a “short”

• 4 bytes (32 bits): Known as a “double-word” or an “int”

• 8 bytes (64 bits): Known as a “quadword”4

Looking again at Figure 2-1, the memory itself doesn’t have any knowledge of 

whether or not a value is a single byte or multiple bytes. For the memory, it is all stored 

a byte at a time. However, if you were to access a memory location as a quadword (i.e., 

8 bytes), it would treat the memory at that address and the next seven locations after as 

a single unit. So, accessing a quadword from memory address 0014 in the figure would 

actually use all of the values from 0014 to 0021 as one giant value. However, Chapter 7 

has some additional important information on how these bytes are stitched together.

4 A quadword is sometimes referred to as a “long” or a “long long,” but these usages are 
sufficiently inconsistent that we will generally avoid using them. For instance, “long” will 
sometimes refer to 4-byte values.
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This figure shows the conceptual layout of 32 bytes of memory. Each location 

contains a value between 0 and 255 (which is 1 byte) and is labeled by an address, which 

is how the computer knows where to find it. The actual values here do not have any 

particular meaning, just shown to give examples of byte values.

2.7  The Structure of the CPU
The CPU itself has an organization worth considering. Modern CPUs are actually 

extremely complex, but they maintain a general conceptual architecture that has 

generally remained stable over time.

The common conceptual parts of a CPU are

• Registers

• Control unit

• Arithmetic and logic unit

Figure 2-1. Conceptual View of Memory
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• Memory management unit

• Caches

Registers are tiny blocks of memory inside the processor itself. These are bits of data 

that the processor can access directly without waiting. Most registers can be used for 

any purpose the programmer wishes. Essentially what happens is that programs load 

data from memory into the registers, then process the data in the registers using various 

instructions, and then write the contents of those registers back out to memory.

Some registers also have special purposes, such as pointing to the next instruction to 

be carried out, holding some sort of processor status, or being able to be used for some 

special processor function. Registers are standardized—that is, the available registers is 

defined by the CPU architecture, so you won’t get a different set of registers if you use an 

AMD chip or an Intel chip, as long as they are both implementing the x86-64 instruction 

set architecture.

Programming in assembly language involves a lot of register access.

The control unit sets the pacing for the chip. It handles the coordination of all the 

different parts of the chip. It handles the clock, which doesn’t tell time, but is more like a 

drum beat or a pacemaker—it makes sure that everything operates at the same speed.

The arithmetic and logic unit (ALU) is where the actual processing takes place. It 

does the additions, subtractions, comparisons, etc. The ALU is normally wired so that basic 

operations can be done with registers extremely quickly (typically in a single clock cycle).

The memory management unit is a little more complex, and we will deal with 

it further in Chapter 14. However, in a simple fashion, it manages the way that the 

processor sees and understands memory addresses.

Finally, CPUs usually have a lot of different caches. A cache is a piece of memory 

that holds other memory closer to the CPU. For instance, instructions are usually carried 

out in the same order that they are stored in memory. Therefore, rather than wait for the 

control unit to request the next instruction and then wait for the instruction to arrive 

from main memory, the CPU can preload a segment of memory that it thinks will be 

useful into a cache. That way, when the CPU asks for the next instruction, it doesn’t 

have to wait on the system bus to deliver the instruction from memory—it can just read 

it directly from the cache. CPUs implement all sorts of caches, each of which cache 

different things for different reasons, and even have different access speeds.

They key to understanding CPU architecture is to realize that the goal is to make 

maximal use of the CPU within the limits of computer chip engineering.
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2.8  The Fetch-Execute Cycle
The way that the processor runs programs is through the fetch-execute cycle. The 

computer operates by reading your program one instruction at a time. It knows which 

instruction to read through a special register known as the instruction pointer (or IP), 

which is also known as the program counter (or PC).

The computer essentially runs an endless cycle of the following operations:

 1. Read the instruction from the memory address specified by the 

instruction pointer.

 2. Decode the instruction (i.e., figure out what the instruction 

means).

 3. Advance the instruction pointer to the next instruction.5

 4. Perform the operation indicated by the instruction.

Each instruction is extremely limited in its operation. Available instructions do 

operations like the following:

• Load a value from memory into a register.

• Store a value from a register into memory.

• Do a single arithmetic operation.

• Compare two values.

• Go to a different location in the code (i.e., modify the instruction 

pointer) based on the result of a previous comparison.

You might be surprised, but those are pretty much all the instructions you really 

need in a computer.

You may be wondering how you get from instructions like that to doing things like 

displaying graphics in a computer. Well, graphics are composed of individual dots 

called pixels. Each pixel has a certain amount of red, green, and blue in them. You 

can represent these amounts with numbers. The graphics card has memory locations 

5 The reason why step 2 is before step 3 is because different instructions are of different lengths 
and it has to decode the instruction before it knows how much to advance the instruction 
pointer. Step 3 occurs before step 4, because step 4 could itself include a modification of the 
instruction pointer and we don’t want to get in the way of any modification done there.
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available for each pixel on your screen. Therefore, to display a graphic onscreen, you 

need only to move the color values to the correct places in memory.

Likewise, let’s think about input. When someone moves their mouse, this modifies a 

value in memory. This memory location can be loaded into a register, compared to other 

values, and then the appropriate code can be executed based on those movements.

Now, these are somewhat simplified explanations (in real computers, these 

operations are all mediated by the operating system), but they serve to give you a feel for 

how simply moving, storing, comparing, and manipulating numbers can bring you all of 

the things that computers offer.

2.9  Adding CPU Cores
Most modern computers have more than one CPU core. A CPU core is like a CPU, 

but more than one of them may exist on a single chip, and while each core is largely 

independent of the other cores on the same chip, the cores may share a certain amount 

of circuitry, such as caches.

Additional hardware has been developed to keep the different CPU cores 

synchronized with each other. For example, imagine if one core had a piece of memory 

stored in one of its caches and another core modified that same data. Getting that 

change communicated to the other cores can be a challenging prospect for hardware 

engineers. This is known as the cache coherence problem. It is usually solved by having 

the CPUs and caches implement what is known as the MESI protocol, which basically 

allows caches to tell other caches they need to update their values.

Thankfully, caching issues are handled almost entirely in hardware, so programmers 

rarely have to worry about them. There are a few instructions that we can use to do a 

minor amount of cache manipulation, such as flushing the cache, requesting that the 

cache load certain areas of memory, etc. However, for the most part, the complexity 

of modern CPUs (and the wide variety of implementations of that CPU architecture) 

usually means that the CPU will be much better at handling its cache than you could 

possibly be.
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2.10  A Note About Memory Visualizations
One thing to note is that visualizations of computer memory is made difficult because 

sometimes we think of memory in terms of their addresses, in which case it seems 

obvious to put the higher addresses on the top and the lower addresses on the bottom, 

because we naturally arrange numbers that way. However, sometimes it is more natural 

to visualize something as “starting” at the top and “finishing” at the bottom, and, in 

those cases, we oftentimes put the lower memory addresses on the top and the higher 

ones on the bottom. All of this to say, the drawings of memory in this book will each 

indicate whether they are drawn with the lower addresses at the top of the drawing or 

at the bottom. So, when looking at memory visualizations in this book, please be sure to 

note which way the visualization is oriented.
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CHAPTER 3

Your First Program
We have talked enough about programming—it is time to actually get started! This 

chapter will start out with an extremely simple assembly language program just to 

show the basics of how to convert an assembly language program into a program you 

can execute. Then, we will move on and add some extremely basic functionality to our 

program. After that, we will have enough background knowledge to go into more depth 

about assembly language programming.

If your computer is not running the Linux operating system (i.e., it is a Mac or is 

running Windows), you will need to use the directions in Appendix A in order to get a 

suitable environment up and running using Docker (don’t worry—this will not adversely 

impact your computer). This setup has all of the tools you will need preinstalled. If you 

have never used the command line before, be sure to check out Appendix B for a basic 

tutorial.

If you are already running Linux, be sure that the developer tools (especially GCC) 

are installed on your computer. How to do this will vary depending on your specific 

Linux distribution. Alternatively, you can also run the Docker setup mentioned in 

Appendix A.

3.1  Building a Simple Assembly Language Program
The first program we will program will do nothing but exit with a status code. For this 

program, don’t worry yet about how it works. The goal is to just get something entered 

and worked through the process. The process for getting your code converted into a 

program is outlined in Figure 3-1.

The code for this first program is as follows. Type it in as the file myexit.s using an 

editor. Type it in exactly as written. We will discuss it line by line in the next section.

myexit.s

# My first program.  This is a comment.
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.globl _start

.section .text

_start:

    movq $60, %rax

    movq $3, %rdi

    syscall

This is known as the source code. Source code is the code that a human writes for 

a computer to do. The source code gets assembled into machine language using the 

assembler (we are using the GNU Assembler). Machine language has the same meaning as 

the source code, but it transformed into a format that the computer is better able to process.1 

To run the assembler, enter the following command in the command line (not in the file):

as myexit.s -o myexit.o

This takes your source code, converts it to machine code, and places it in an object 
file called myexit.o. An object file contains code, but it is not yet runnable. On larger 

programs, lots of object files are generated and then linked together using the linker. 

Even though we only have one file, we still need to link it in order to make it runnable. 

The following command will link the file:

ld myexit.o -o myexit

This will produce the executable file myexit in your current directory. To run it, just run

./myexit

You may notice that it does nothing except, well, exit. That’s not quite true, though. It 

did leave an exit status code, which you can access through the command line like this:

echo $?

1 Appendix K has some basic information on what this looks like, but you probably shouldn’t 
worry about that at this point.

Figure 3-1. How a Program Is Built from Source Code
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If all went well, this should print out a 3 on your screen. Why 3? Just because it is an 

unusual status, and therefore you will know that the status is from your program. To get a 

different status, you can modify the original code. Replace $3 with any number between 

0 and 255 (be sure to prefix it with a dollar sign), reassemble, relink, and rerun your 

program, and it will show that value when you do echo $?.

3.2  Line-by-Line Analysis
To begin with, the first line is a comment:

# My first program.  This is a comment.

If this is your first programming language, comments are notes to yourself and other 

programmers about the program. Remember that programs spend more time being 

maintained than being written for the first time. This means that what you can keep 

in your head today you will forget about a year from now when trying to update your 

program. It’s even more difficult if someone else has to modify your program. Comments 

help you and others navigate your code and tell what is going on, but they don’t change 

anything about what the computer will do. In assembly language, comments start 

with the hashtag mark, #. Everything on the same line after that point is ignored by the 

assembler.

If you are being super lazy, you can skip entering the comments in your code. 

However, I think it’s best to leave them in. Typing the comments will help you to think 

more clearly about the program you are writing.

The next line is

.globl _start

Anything that starts with a dot (.) is an instruction to the assembler (known as 

a directive) and doesn’t usually generate code on its own. What .globl does is tell 

the assembler that the symbol _start (and its corresponding value) should not be 

discarded after the assembly process is over. Normally, all of our own names for things 

get discarded by the assembler. The .globl directive tells the assembler not to do this, 

usually because it is going to be referred to by something else. Here, the _start symbol 

is a special symbol used by the linker to know where the program should start running 

when the user runs the program, known as the entry point of the program.
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The next line is another command to the assembler:

.section .text

The .section directive tells the assembler that the next part of the listing should be 

placed in the code section of the program, historically known as the text of the program 

(even though it isn’t actually readable text). The other section we will spend a lot of time 

dealing with in this book is the .data section, which will handle predefined memory 

storage in our program.

In assembly language, you can freely switch between .data and .text sections, and 

the assembler and linker will group all of the data and code sections together in the final 

executable.

The next line is

_start:

This is called a label, and it defines the value of the _start symbol. This tells the 

assembler that _start refers to (i.e., it labels) the address in memory that the code (or 

data) that follows it resides in. Note that you don’t have to know where the code will live 

when it is running—the linker will take care of that. Instead, you simply label the location 

using _start:, and from that point on, the symbol _start will refer to that location in 

the code. Think of it as kind of like a bookmark.

As mentioned previously, _start is a special symbol which is used by the linker to 

know where to start the program executing. However, you will often want to create your 

own symbols to refer to various parts of your code.

So far, though, we don’t have any actual instructions for the computer to execute. 

However, the next line is the first real instruction:

movq $60, %rax

The name of the instruction is movq, which stands for “move quadword.” As 

mentioned in Chapter 2, a quadword is a 64-bit (8-byte) value. In this book, the 

quadword is the typical value size we will be dealing with.

This instruction moves the value 60 into the register named %rax, which is a 64-bit 

register. Remember that a register is a storage location within the CPU itself, not inside 

main memory. The register name looks funny, and we will discuss these names in a 

later section. The dollar sign before the 60 means that we are treating 60 as a value, not 

an address, or anything else. If we had left off the dollar sign, it would try to load a value 
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from memory address 60 into the register, which is not what we want (and will likely 

trigger an error).

The number 60 refers to the system call number of the command we want the 

operating system to run (which will be the exit system call). Each operating system 

function is assigned a system call number, and 60 is the one for exit. Note that we will 

cover system calls in quite a bit of detail in Chapter 10.

Note that moving this value into %rax does not make the call (that comes in a later 

instruction); it is just preparing to do so.

The next line is similar:

movq $3, %rdi

This has the same basic meaning as the previous line (move a 64-bit value into a 

register), just using a different value (3) and a different register (%rdi). In the exit system 

call, the %rdi register holds the exit status of the program. Therefore, whatever value we 

load into %rdi will be available when the user does echo $?.

The final line is simply

syscall

This instruction actually performs the system call. It tells the processor to transfer 

control to the operating system to perform a task. The requested task, as mentioned 

earlier, is known as the system call number and is stored in %rax (60 in our case for the 

exit system call). If the system call uses additional data (the exit system call takes a 

value for the exit status), this is placed in %rdi. Other system calls require even more 

data, and each piece of data has a defined register that it should be in.

If these register names look funny, that’s okay. We will go into more detail about the 

available registers in Chapter 4.

That is your first program—congratulations!

3.3  The Meaning of the Code
As you can see, assembly language is really a step-by-step process. You tell the processor 

each and every thing you want it to do. Each step in the process is its very own line.

Each instruction is fairly straightforward, although the acronyms sometimes throw 

people for a loop. The movq instruction tells the processor to move data around in 64-bit 

chunks (8 bytes at a time). Other instructions exist for other sized chunks: movl for 32-bit 

chunks (4 bytes), movw for 16-bit chunks (2 bytes), and movb for 8-bit chunks (1 byte).
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The movq instruction has two operands—the first is the “source” and the second is 

the “destination.” The two operands are separated by a comma. Operands are essentially 

“options” that give additional detail to the instruction about what to do.2 Operands can 

also be called arguments or parameters, though those terms are usually used in relation 

to function calls (covered in Chapter 11).

In the movq instruction, the source can be any number of things. It can be a register. 

It can be a memory address. It can be other things as well. In this program, we used an 

actual number as the source. The $ is what told the assembler that the number we were 

using was just a number and did not have some other meaning.

The destination is similar and has similar meanings. In our case, the destination was 

a register. In the first instruction, it used the register %rax, and in the second instruction, 

it used the register %rdi.

Therefore, these instructions told the computer to move specific numbers into these 

registers. I always like to read instructions as sentences. If you take the instruction movq 

$3, %rdi, you can read it as saying, “move the number three into the %rdi register.”

There are a lot of variations on this instruction. You could, for instance, move 

information from one register to another. For example, doing movq %rax, %rdi would 

move data from the %rax register to the %rdi register. We will learn many other variations 

in the coming chapters.

The last instruction is the syscall (system call) instruction. This instruction is a 

special instruction that causes the Linux kernel (the core operating system) to take over. 

System calls are used when you need more than just computation power—when you 

need access to system resources such as files, the network, the display, other processes, 

etc. In this case, we are telling the operating system that we are done executing. The 

operating system will then clean up any resources it has allocated for us, stop our code 

from running any further, and return our exit status code back to the command that 

called us (usually our shell).3

2 In terms of language, you can think about the instruction as being the verb, and operands, if they 
are needed, are acting as the other parts of speech, such as the indirect object, the direct object, 
or any adjectives or adverbs.

3 If you have programmed in 32-bit assembly, you may wonder what happened to the int 
0x80 instruction or the Linux 2.6 sysenter instruction. There are a lot of behind-the-scenes 
implementation details that make the syscall run much faster than int 0x80. Therefore, on 
x86-64 systems, Linux operates using the syscall instruction. Additionally, the new interface 
gave the kernel team a chance to optimize several details about which registers are used, how 
the system call numbers are assigned, etc., giving x86-64 several considerable speed advantages 
when interfacing with the kernel.
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Note that syscall instruction does not care in what order the registers were set. We 

could have set %rdi first and %rax second, and it would not have changed the meaning of 

the program. It only matters what the values are at the time that the syscall instruction 

is issued. Later, we will talk about what each of the registers means and how they are 

used in the system call interface. But, for now, just realize that, generally, the syscall 

instruction works by giving special jobs to different registers that have to be set up before 

the instruction is issued, and then the operating system will make use of the values in 

those registers.

Always keep in mind that instructions in your program are executed one at a time in 

sequential order.4 The code will start at the location marked by _start and then execute 

the first instruction, then move to the next instruction, then move to the next instruction, 

etc. Operating a single step at a time is what allows computers to be implemented 

in electronics. Remember, in order for an instruction to be available in assembly 

language, that instruction has to be implemented by a circuit on the CPU. Therefore, 

the instructions that we encounter will only have a limited scope in what they can do, 

because they are limited by what can be encoded into the chip’s circuits.

You may be wondering about the spacing we are using in our program. Spacing is 

largely ignored in assembly language, except as needed to separate the instructions 

from its operands. As a matter of style, I usually put labels, most assembler instructions 

(such as .section or .globl), and top-level comments in the leftmost column. I usually 

indent the actual instructions themselves. Comments within the code are usually put 

to the right of the instructions or above the instructions and are indented to match the 

instructions. I also leave a blank line between logically distinct sections of code to help 

readers recognize which pieces of code belong together.

The main thing is to make your code readable not only by yourself but by others. 

Whatever makes the code easiest to follow/understand is what is best.

4 Modern processors are smart enough that they can sometimes reorder instructions or execute 
more than one at a time if it makes your code faster. However, it will only do this if the reordering 
or simultaneous execution has the same effect as running your program in the written order. 
Thus, as a programmer, you don’t have to worry about it. Just know that if your processor 
supports “out-of-order execution,” you don’t have to worry about what order the process will 
execute your code—the processor will make sure that it runs as you wrote it, just faster. See 
Appendix I for more details on this.

Chapter 3  Your First program



32

3.4  Stepping Through Your Program
If you are having trouble seeing what your program is doing, it is often helpful to run it 

using a debugger. A debugger is a program that will run your program a step at a time 

and let you see exactly what is happening inside the program as it runs.

Personally, I think running through a program with a pen and paper and writing out 

the values of each register at each point in time is the best way to analyze a program. 

Doing so helps you really think about what it is you are doing and what the computer 

looks like at each step. However, it is also good to know how to use a debugger to step 

through your program for you and show you what is happening.

While it can be useful at any stage of development, it is especially instructive for 

beginners to see what their code is actually doing to the computer. For information on 

debugging your programs, see Appendix C. Note that some of the information there we 

won’t get to until later chapters, but nonetheless, if you want to watch your program 

unfold a step at a time, Appendix C will show you how.

 Exercises

 1. Take the program given in this chapter and change the value to be 

returned (the one stored in %rdi). Be sure you get back the right 

value when your program exits. Don’t forget to assemble and link 

your program before running it again.

 2. Make a mistake! Misspell one of the instructions and see what the 

assembler does.

 3. Make another mistake! Leave off the syscall instruction and see 

what happens.

 4. Read through Appendix C. See if you can run your program a step 

at a time under the debugger.
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CHAPTER 4

Registers and Simple 
Arithmetic
In the last chapter, we learned the basic structure of an assembly language program 

and how to assemble, link, and run it and display the exit status code. This chapter will 

focus on getting to know the register set of the x86-64 ISA as well as learning a few new 

instructions to make the code a little more interesting. We will start by looking at a few 

arithmetic instructions so we can expand beyond just moving data around.

4.1  Simple Arithmetic Instructions
So far, we have learned two instructions: movq (and its cousins) and syscall. However, 

there are many other instructions available. In this section, we are going to expand our 

knowledge of instructions by focusing on simple arithmetic. Note that, for right now, we 

are only dealing with nonnegative integers. We will eventually get to negative numbers 

and decimals, but we will start with nonnegative integers because they are easier to 

understand.

On x86-64, arithmetic instructions only have two operands. The second operand 

has two functions—it operates as both part of the arithmetic and is also the destination 

where the result is stored.

For instance, let’s say that we wanted to add the contents of %rax and %rdi. The 

instruction for this is

addq %rax, %rdi

What this does is take the value in %rax, add it to the value in %rdi, and store the 

resulting value in %rdi, erasing whatever was there before. The two operands are still 

usually considered the “source” and the “destination” even though they both are used as 

sources of the value.

https://doi.org/10.1007/978-1-4842-7437-8_4#DOI
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If you insert this line into the previous program immediately before the syscall, 

then the resulting value will be 63 instead of 3 (since %rax had 60 in it). The first operand 

can also be a plain number, such as $25. addq $25, %rdi will add 25 to whatever is 

currently in %rdi and then store the result in %rdi.

Some simple arithmetic instructions include

addq: Adds the source and the destination together.

subq: Subtracts the source from the destination.

In computer programming, adding and subtracting one are so common that there is 

even specific instructions for them. These instructions only take a destination, which is 

whatever you wanted to add or subtract one to/from.

incq: Increments (adds one to) the destination.

decq: Decrements (subtracts one from) the destination.

Multiplication and division are more complex. With these instructions, the 

destination is assumed to be %rax. You never list %rax in the instruction, because it is 

there implicitly with the instruction. The simplest forms of multiplication and division 

instructions include

mulq: Multiplies the source by %rax. %rax is the destination. A 

number cannot be used as the source—it must be a register or 

memory location.

divq: Divides %rax by the source. %rax is the destination. A 

number cannot be used as the source—it must be a register or 

memory location. The remainder is stored in another register, 

%rdx, which should be set to zero before the instruction occurs.

Don’t forget that, for mulq and divq, the destination is implicit in the instruction. 

That is, we never write %rax, it is implied by the instruction itself.

As an example, if you performed the instruction mulq %rbx, this would take %rbx, 

multiply it by %rax, and then store the result in %rax. That’s because the usage of %rax 

is implicit in the instruction. That is the only register that mulq can use as a destination, 

so you don’t need to write it out. Likewise, if you issued the instruction divq %rcx, this 

would take %rax, divide it by %rcx, and then store the result in %rax and the remainder 

in %rdx.
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Many instructions use other registers implicitly as well. The names of registers 

are often assigned based on which types of operations they are used implicitly on. 

%rax is sometimes known as the “accumulator” since it is often the implicit target of 

mathematics instructions (and thus accumulates the results). Also, don’t forget that 

while we can specify specific numeric values as the source in movq, addq, and subq, these 

are not allowed for mulq and divq.

One other note—all these instructions, but especially mulq and divq, are actually 

more complicated than we have presented here. We are taking baby steps. More details 

about these are given in Chapters 5 and 8.

The following is a simple arithmetic program. See if you can figure out the final result 

of the program.

arithmetic.s

.globl _start

.section .text

_start:

    # Perform various arithmetic functions

    movq $3, %rdi

    movq %rdi, %rax

    addq %rdi, %rax

    mulq %rdi

    movq $2, %rdi

    addq %rdi, %rax

    movq $4, %rdi

    mulq %rdi

    movq %rax, %rdi

    # Set the exit system call number

    movq $60, %rax

    # Perform the system call

    syscall
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Remember to follow each line, one after the other. If it helps, use a piece of paper, 

and write down the value of each register after each instruction. After following the 

program yourself, enter it in the file arithmetic.s and assemble it, link it, run it, and 

check the output using the following commands:

as arithmetic.s -o arithmetic.o

ld arithmetic.o -o arithmetic

./arithmetic

echo $?

Did you get the correct result? If not, go back through and see if you can figure out 

where you went wrong. After that, play with the program. Do a variety of additions, 

subtractions, and multiplications. Just remember that the final result has to be (a) 255 or 

less and (b) stored in %rdi, or it won’t be properly returned as the exit status.

4.2  Register Layouts
So far, we have introduced three registers—%rax, %rdi, and %rdx. You may be wondering 

where these names come from, as they are a little strange. First, there is also quite a bit 

about it that we haven’t gotten to yet, and that accounts for the strangeness of some of 

the names. Additionally, however, this instruction set architecture has gone through 

quite a history, and much of the naming is the result of this history. The instruction set 

architecture was first established as a 16-bit ISA, then extended into a 32-bit ISA, and 

finally extended into what it is now.

You can see this history in the naming of the registers. Originally, the accumulator 

was just called %ax and held 16 bits. When the architecture was extended to 32 bits, the 

32-bit version of %ax was called %eax (i.e., “extended” %ax). When the architecture was 

further extended to 64 bits, the name of the 64-bit version became %rax.

All of these register names are still available and still operate just as they did before. 

The way it is implemented is that %rax contains all 64 bits of the register, %eax simply 

refers to the least significant 32 bits of the %rax register, and %ax refers to the least 

significant 16 bits of the %rax register. Additionally, %ax can be further divided into 

bytes, with %ah referring to the most significant 8 bits of %ax (called the “high byte”) and 

%al referring to the least significant 8 bits of %ax (called the “low byte”). The diagram in 

Figure 4-1 shows this in more detail.
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The preceding register layout shows how %rax has embedded within it the smaller 

registers %eax (32 bits), %ax (16 bits), %ah (8 bits), and %al (8 bits). The least significant 

bits are shown in this diagram on the rightmost side. Also note that anytime that bits are 

labeled, bit 0 is the least significant bit (furthest right) and bit 63 is the most significant 

bit (furthest left).

Let’s talk for a moment about the terms “most significant bits” and “least significant 

bits.” Think of the decimal number 23,415. Which digits play the most significant roles 

in this number? The leftmost digits do. If we changed the “2” for another digit, it would 

make a much more significant impact than if we changed any other digit in the number. 

If we changed the “2” to a “1,” it would drop the value of the number by 10,000. The “5” 

is the least significant digit. If we dropped the “5” to a “1” it would only drop the value of 

the number by 4.

Remember, then, that “bit” just means “binary digit.” So, if I have a number in binary 

which is 1011001101111, the digits to the left are the most significant, and the digits 

to the right are the least significant. Note, however, that sometimes the significance in 

numeric terms doesn’t always tell you how the number is physically stored. But that is 

another topic for a later chapter (see Chapter 7).

The important thing to note is that in Figure 4-1, the older registers always occupy 

the least significant positions of the newer, larger versions of the register. The reason for 

that is simple. Let’s say we start with the whole of %rax set to zero. Next, we load in the 

value $9 (0000000000001001) into %ax. Because this is also the least significant bits of 

%eax and %rax, that means that this number will continue to have the same meaning for 

those registers as well. For %eax, it will just mean 00000000000000000000000000001001,  

and for %rax, it will mean 0000000000000000000000000000000000000000000000000000

000000001001. Since the 1001 part is in the least significant bits, it will continue to have 

the same numeric meaning for all of them.

Figure 4-1. Register Layout of %rax
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4.3  The General-Purpose Registers
The x86-64 ISA has 16 general-purpose registers. By “general purpose,” I don’t mean 

that none of them have specific uses, but that, in the general case, you can specify these 

registers for the source or destination of many different instructions. Eight of those are 

carried over from the 32-bit architecture. These eight are divided into two classes.

The first class of registers are four registers that we might call the computational 

registers. These registers are %rax, %rbx, %rcx, and %rdx. These registers are divided up 

just like %rax as shown in Figure 4-1. For instance, %rbx has a 32-bit version called %ebx 

embedded in it, which has the original %bx embedded in that, whose individual high and 

low bytes can be referred to by %bh and %bl. These registers are normally used for general 

computation. Additionally, the ability to access individual bytes of the registers can 

come in handy, as a lot of data is organized around individual bytes.

However, these registers also have specific purposes, which have one or more 

instructions tailored to their function:

%rax: This is the accumulator. It is the most widely used general- 

purpose register for computation.

%rbx: This is known as the “base register.” This is often used for 

indexed addressing, which is covered in Chapter 6.

%rcx: This is known as the “counter register.” It is historically used 

for counts when doing repetitive code (loops). See Chapter 5 for 

more information.

%rdx: This is known as the “data register.” It has some special 

significance in certain arithmetic operations and input/output 

operations and is also sometimes used in some instructions in 

coordination with %rax, such as with the divq instruction.

The next four registers are still considered “general purpose” because they can be 

used in computation, but they are actually focused on specific tasks. The first two (%rsi 

and %rdi) can be safely for general purposes, but it is best to leave the others for their 

special purpose. Note that, while each of these has a 32-bit and 16-bit version, you 

cannot access any individual bytes in these registers. For instance, the %rdi register has 

a 32-bit version (%edi) and a 16-bit version (%di), but there is no register that will give 

me any individual bytes from this register. This is because they are largely intended to 
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be pointers, which means they will store the memory address of other values. These 

registers are

%rsi: This is the “source index” register. It has special uses for 

working with longer spans of memory (see Chapter 9).

%rdi: This is the “destination index” register. It is often used in 

conjunction with %rsi for working with longer spans of memory 

(see Chapter 9).

%rbp: This is the “base pointer.” We will discuss the usage of the 

base pointer in Chapter 11.

%rsp: This is the “stack pointer.” We will discuss the stack and the 

stack pointer in Chapter 11.

Finally, while the previous registers can trace their history back to the original 8086 

chip that started it all, the x86-64 ISA gives us eight new general-purpose registers. These 

are simply labeled as %r8 through %r15. You may wonder why the counting starts at 8 

instead of 9. This is because, in low-level programming, counting almost always starts at 

zero instead of one. Therefore, the first eight registers can be considered 0–7 (though you 

can’t refer to them that way in assembly language), and these new registers are 8–15.

Even though these registers didn’t exist in previous versions of the ISA, these 

registers also have 32-bit, 16-bit, and individual-byte versions. For instance, %r11 refers 

to the whole 64-bit version of the register. However, you can refer to the 32-bit version by 

specifying %r11d, the 16-bit version by specifying %r11w, and the least significant (low) 

byte by specifying %r11b. Each of the new general-purpose registers can be accessed in 

this way.

Additionally, several of these registers have special instructions that operate with 

them, but their usage is sufficiently obscure that we will not cover them in this book.

4.4  Writing Binary Numbers
Now, so far, when writing explicit values, we have been writing the numbers in decimal. 

However, the machine actually thinks in binary. If you wish, you can actually write 

numbers directly in binary. The assembler, though, needs to know that the number is 

a binary number; otherwise, it couldn’t distinguish between 10 meaning “ten” and 10 

as a binary number, which means “two” in decimal. Therefore, when writing in binary, 
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we prefix the number with 0b (that’s a zero and then a lowercase “b”). So, in assembly 

language, $10 refers to the decimal number ten, and $0b10 refers to the binary number 

10, which in decimal is two.

So, if I want to see what a number in binary looks like in decimal, I can simply write a 

program like the one as follows. Because echo $? always prints the number in decimal, 

then I will get to see what the value is in decimal. Remember, under the hood, everything 

is in binary.

binaryexit.s

.section .text

.globl _start

_start:

    movq $0b1101, %rdi

    movq $60, %rax

    syscall

To assemble and run the program, you can do

as binaryexit.s -o binaryexit.o

ld binaryexit.o -o binaryexit

./binaryexit

echo $?

You can modify the binary value in binaryexit.s and see the different results. 

Remember, though, if the value goes beyond 255, only the least significant 8 bits will be 

returned.

4.5  Playing with the Registers
Now we have a lot more registers we can play with. In addition to having more registers, 

we have also learned that the 64-bit registers have 32-bit, 16-bit, and sometimes 8-bit 

registers embedded within them. How do we access those in instructions?

Have you noticed that many of our instructions have a q after them? We have movq, 

addq, etc. The reason for this is that the instruction is including the size of operand it is 

dealing with. This may be obvious now, since the register name also implies a size, but, 

when we deal with main memory later on, it will sometimes not be implicitly obvious.
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The q suffix refers to quadwords. This is a bit of a misnomer, but I’ll explain the 

meaning. The original x86 ISA was actually a 16-bit architecture prior to 1985. This 

meant that the “standard” size of operations was 16 bits. The standard size of a value in 

an architecture is known as the word size.

When the architecture expanded to 32 bits, technically the word size changed to 32 

bits. However, to maintain continuity with previous terminology and documentation 

(which had the word size as 16 bits), 32-bit values and registers are referred to as being 

“double-word” size (these are also referred to as “long” values). When the architecture 

expanded again to 64 bits, even though the word size is technically 64 bits, 64-bit values 

are considered in the documentation as “quadword” size.

In the GNU Assembler, you use the q suffix on instructions to indicate quadwords, 

the l suffix to indicate double-words (longs), the w suffix to indicate words, and the b 

suffix to indicate individual bytes.

So, to move a single byte (say the number 5) into the %ah register, you would use the 

following instruction:

movb $5, %ah

To move the %ax register into the %dx register, you would use the following 

instruction:

movw %ax, %dx

The following code will play around with different register sizes. It starts by loading 

a 16-bit value into %bx, and then it accesses the high and low bytes (%bh and %bl) 

individually.

valuesize.s

.section .text

.globl _start

_start:

    movw $0b0000000100000010, %bx

    addb %bh, %bl

    movb $0, %bh

    movq %rbx, %rdi

    movq $60, %rax

    syscall
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To assemble, link, and run the program, do the following:1

as valuesize.s -o valuesize.o

ld valuesize.o -o valuesize

./valuesize

echo $?

To understand this program, let’s look at this initial value that is loaded into %bx: 

$0b0000000100000010. This is a 16-bit value that is being stored in a 16-bit register. 

However, the %bx register can be accessed by individual bytes—%bh and %bl. If we break 

up this value into two pieces, we can see that the high 8 bits is 00000001 (which is 1 in 

decimal) and the low 8 bits is 00000010 (which is 2 in decimal).

Then, these two values are added together and then stored in %bl. However, we need 

them in %rdi so that it will be put into the exit status code. We cleared out the high byte 

(%bh) of %bx and then moved the whole of %rbx (which includes %bx) into %rdi to be the 

status code.

We then set %rax to 60 (the exit system call number). Now, with our registers 

properly set up, we issued the syscall instruction to send our exit status code back to 

the command line environment.

So why didn’t we do this operation directly in %di or %rdi? Why start with %bx 

and then move the result? If you remember, %rdi does not have the ability to access 

individual bytes. Therefore, we used register %bx to do individual-byte manipulation 

and then moved the result to the place it needed to go to be used in the system call. A 

lot of assembly language winds up being shuffling between registers that have different 

functions or special instructions associated with them.

While this may seem like a contrived example, the fact is that this is actually a 

faster way to load values. Notice that we were able to essentially load two registers 

(%bh and %bl) with a single instruction, because they are both part of %bx. The ability 

to conceptualize a value broken down into bits and then separated, or, alternatively, 

a series of small values joined together in a larger one, is actually key to being able to 

understand a lot of low-level code. Sometimes we will want to even treat a number as if it 

were a collection of individual, unconnected bits, where each bit has its own individual 

meaning.

1 Note that this is the last time I will show how a simple program is assembled, linked, and run. 
I’m going to assume that you can determine the procedure in simple cases going forward.
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 Exercises

 1. Rewrite the first program in this chapter (arithmetic.s), but use 

different registers to hold the intermediate values.

 2. Write your own sequence of arithmetic operations. Walk through 

the code by hand before running it so you know how it should 

work. Then, run the code using the debugger (Appendix C) to 

verify that you were correct. Be sure to check the contents of the 

registers at every step.

 3. Make a mistake! Use the wrong mov instruction for a given register 

(i.e., movq $5, %rax). What does the assembler say when this 

happens?

 4. Rewrite the binaryexit.s program in this chapter to output 

different values. See if you can figure out the decimal number that 

will be output from your binary representation.

 5. Write a program (even if it is a nonsense program) that utilizes 

byte, word, long (double-word), and quadword instructions.
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CHAPTER 5

Comparison, Branching, 
and Looping
In this chapter, we are going to look at how the computer makes comparisons and decisions.

5.1  The %rip Register and the jmp Instruction
In Chapter 4, we learned about the general-purpose registers. These registers are general 

purpose because they can be used for most arithmetic instructions. However, there 

are a few registers which are not usable in this way, but have a specific function that is 

maintained by the CPU itself. These are the special-purpose registers.

The first register I want to talk about you will probably never need to refer to directly, 

and that is the instruction pointer, or %rip (it is prefixed with an r because it is a 64-bit 

register). The instruction pointer simply points to the next memory location that the 

processor is going to process an instruction from. This lets the CPU know where to pull 

the next instruction from when the next clock cycle runs. During each instruction, the 

CPU will increment the instruction pointer to point to the next instruction—the one 

immediately after the current instruction.

This register can be manipulated through jump instructions. A jump instruction tells 

the computer to alter the flow of the program by setting the instruction pointer to a value 

that is different from where the CPU was going to set it to. The most basic form of this 

instruction is simply jmp, which tells the processor the address of the next instruction 

you want to execute.
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To give you a simple example, the next program will skip over several instructions 

using the jmp instruction:

jmpexample.s

.globl _start

.section .text

_start:

    movq $7, %rdi

    jmp nextplace

    # These two instructions are skipped

    movq $8, %rbx

    addq %rbx, %rdi

nextplace:

    movq $60, %rax

    syscall

As you can see, just as _start is a label which marked a place in the code where the 

code begins, in this code, nextplace also marks a location in the code. However, unlike 

_start, I made up the name nextplace and could call it anything I wanted. _start has a 

special meaning (it is where the code begins executing), but I can add additional labels 

anywhere in the code I wish.

Here, nextplace bookmarks the memory location that contains the instruction that 

follows the label. So, when I issued the instruction jmp nextplace, that tells the CPU to 

alter its instruction pointer so that the next instruction to execute will be the one at the 

memory address labeled by nextplace, skipping the two instructions in the middle.

Figure 5-1 gives a conceptual model of what is occurring.
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Here, the instruction flow skips several instructions because of a jmp instruction to 

the label labelY which is further down in the code.

Not only can you use jmp to skip instructions, you can use it to repeat them as well. 

Think about it this way, we can jump to a previous section of code which will cause us 

to repeat it. The following code will cause an infinite loop, which means it will simply 

repeat itself forever until you stop it (if you aren’t familiar with Linux, simply pressing 

Ctrl+C will stop the program):

infiniteloop.s

.globl _start

.section .text
_start:
    movq $60, %rax

another_location:
    movq $8, %rdi

    jmp another_location

    # This never gets executed

    syscall

In this program, the label another_location marks a location within the code. Later 

in the program, we jump back to that location. Then the program will execute again from 

that location and eventually hit our jump instruction again, in which case it will go back to 

another_location yet again.

Figure 5-1. Skipping Instructions Using the Jump Instruction
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Figure 5-2 gives a conceptual model of what is occurring.

Here, the instruction flow repeats several instructions because of a jmp instruction to 

the label labelX which had already occurred previously in the code.

As we have seen, jumps can occur to any location within your code. The next 

example is a confused nest of jumps. See if you can follow the code and guess what it 

does before running it:

followthejump.s

.globl _start

.section .text

_start:

    movq $25, %rax

    jmp thelabel

somewhere:

    movq %rax, %rdi

    jmp anotherlabel

label1:

    addq %rbx, %rax

    movq $5, %rbx

    jmp here

Figure 5-2. Repeating Instructions Using the Jump Instruction
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labellabel:

    syscall

anotherlabel:

    movq $60, %rax

    jmp labellabel

thelabel:

    movq %rax, %rbx

    jmp there

here:

    divq %rbx

    jmp somewhere

there:

    addq $5, %rbx

    jmp label1

anywhere:

    jmp thelabel

If you got the result wrong, you should try stepping through the program with a 

debugger as outlined in Appendix C.

5.2  Conditional Jumping and the %eflags Register
The jmp instruction is known as an unconditional jump. That is because it always jumps 

no matter what. It can be useful, but what ultimately makes a computer powerful is the 

ability to branch conditionally. A conditional jump is a variant of the jmp instruction 

that only jumps based on certain conditions.

Unlike higher-level languages, the conditions that are available for a conditional 

jump instruction are very limited. To understand the conditions that are available for 

a jump instruction, we have to introduce a new special-purpose register, the %eflags 

register.1 Rather than thinking about %eflags as holding a single value, you usually think 

1 The %eflags register begins with e and not r because it is a 32-bit register. Since its bits are defined 
by individual statuses, there were not additional status flags needed to extend it to be 64 bits.

Chapter 5  Comparison, BranChing, and Looping



50

about the different bits of %eflags separately. Each bit holds a true/false status of a 

previous operation.

Most of the bits of the %eflags register are for operating system usage and aren’t of 

extreme concern to us. However, there are two flags that come in useful continually:

ZF: The zero flag is set to 1 if the result of the last arithmetic 

operation was zero, or 0 if it was not.

CF: The carry flag is set to 1 if the result of the last arithmetic 

operation resulted in a “carry”—that is, the result was bigger than 

could be held in the destination register.

There are two more flags that we will deal with in Chapter 8 when we deal with 

signed numbers.

What happens is that at the end of each arithmetic instruction (instructions like 

addX, mulX, but not movX), the processor sets the value of these status bits in the %eflags 

register.

The typical way to make use of these flags is with a conditional jump statement. A 

conditional jump statement will jump based on the configuration of particular flags. If 

the condition matches, the jump will occur. Otherwise, the processor will just go to the 

next instruction as if nothing happened. Common jump instructions include

jz: “Jump if Zero” (jump if the zero flag is set to 1).

jnz: “Jump if Not Zero” (jump if the zero flag is set to 0).

jc: “Jump if Carry” (jump if the carry flag is set to 1).

jnc: “Jump if No Carry” (jump if the carry flag is set to 0).

Let us now consider a program which will raise a value to a given power. That is, 

given the values 2 and 3, it will raise 2 to the 3rd power (i.e., 23, or 2 × 2 × 2, which results 

in 8). Another interesting feature of exponents is that anything raised to the zeroth power 

is 1. There’s good reason for that mathematically, but if you’re not a math guy, just trust 

me on that one.

How would we do this? What we want to do is to take the first value (the base) and 

multiply it by itself continually. We will use the second value (the exponent) and use it 

as a counter to keep track of our multiplication. We will run a loop that will continually 
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multiply the current value by the base and decrease our exponent until it is zero, at 

which time we will leave the loop:

exponent.s

.globl _start

# This will calculate 2^3.

# You can modify %rbx and %rcx to calculate

# another exponential.

.section .text

_start:

    # %rbx will hold the base

    movq $2, %rbx

    # %rcx will hold the current exponent count

    movq $3, %rcx

    # Store the accumulated value in %rax

    movq $1, %rax

mainloop:

    # Adding zero will allow us to use the flags to

    # determine if %rcx has zero to begin with

    addq $0, %rcx

    # If the exponent is zero, we are done

    jz complete

    # Otherwise, multiply the accumulated value by our base

    mulq %rbx

    # Decrease the counter

    decq %rcx

    # Go back to the beginning of the loop and try again

    jmp mainloop

complete:

    # Move the accumulated value to %rdi so we can return it

    movq %rax, %rdi
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    # call the "exit" system call

    movq $60, %rax

    syscall

The program starts by loading the initial values into registers. It first loads the base 

(the number we will be multiplying by itself) into %rbx. Then, the exponent is loaded 

into %rcx. This will provide a countdown for the number of times we want to multiply 

%rbx by itself. Finally, a starting value is loaded into %rax. Since anything raised to the 

zero power is 1, and the base multiplied by 1 is our first number anyway, the program 

starts by loading a 1 into %rax.

The next instruction is labeled with the mainloop label. This is the point we will 

return to when repeating the multiplication over and over. The instruction itself may be 

surprising. The program adds 0 to %rcx. Why would we want to do this?

What we really want to know is whether or not %rcx is zero. However, the movq 

instruction doesn’t set anything in %eflags. Therefore, by adding 0 to %rcx, this will set 

the zero flag on %eflags if the result is zero (i.e., if %rcx was zero to begin with).2 Then, 

if %rcx is already zero (i.e., the program is given a zero exponent), the program jumps to 

the completion step. Otherwise, it keeps on going.

Next, we multiply by the base that is in %rbx. Remember, the multiply instruction 

always multiplies with %rax and stores the result there. So, the first time through, %rax 

will just be the base; the second time through, it will be the base squared; the third 

time through, it will be the base cubed; etc. Again, this is why %rax is known as the 

accumulator—many instructions implicitly use this particular register as storing the 

results of operations.

Next, we decrease %rcx. Here, we are using %rcx as a counter—a number which 

increases or decreases for every usage. We are using %rcx to keep track of where we are 

in the multiplying. It starts with the exponent, and every time through the loop we will 

decrease it by one. When %rcx becomes zero, we know that we have finished all of the 

multiplications and can stop.

2 We will learn a better way to compare values in the next section.
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After decrementing %rcx, we jump back to the start of the loop (which is designated 

in our code with the mainloop label).3 So, if %rcx became zero when it was decremented, 

then jz instruction will cause it to exit the loop and go to the complete label.

At the complete label, we take %rax, which holds our result, and move it to %rdi in 

order to return it back to the user. We then do our normal exit system call routine to 

finish the program.

5.3  Comparisons
In the previous program, when we wanted to see if %rcx was zero, we added zero to it and 

checked the flags. There’s nothing wrong with that per se, but it is somewhat unintuitive. 

As a matter of fact, there are a lot of interesting things you can do by just performing 

arithmetic and checking flags, but doing that makes the code hard to follow.

Thankfully, the instruction set gives us instructions to do explicit comparisons 

between numbers, as well as several jump instructions which look at the resulting flags 

and use them to tell the results of the comparison.

The cmpq instruction (and its relatives cmpb, cmpw, and cmpl) compares two numbers 

to tell which one is larger or if they are both equal. Internally, it performs the comparison 

by subtracting the numbers (but discarding the result rather than storing it) and then 

setting the flags accordingly. Then, there are special jump instructions that read the flags 

and know what that means in terms of which one was larger.

If we issued the command cmpq %rbx, %rax, then the CPU would actually subtract 

%rbx from %rax, but, rather than storing the result, it would just set the flags and discard 

the result. The flags will indicate that either %rbx and %rax are the same (the zero flag 

was set), %rax is greater than %rbx (flags were cleared), or %rax is less than %rbx (the flags 

set for this are complicated and will be covered in Chapter 8).

Note that the comparison can be of a register with a register, a register with a specific 

value, or, as we will see later, a register with a value from memory. However, if you 

are comparing a register with a specific value, the value needs to be placed first in the 

comparison.

3 Interestingly, we could have moved the mainloop label to be after the addq instruction. This 
is because the result of decrementing %rcx will still set the zero flag. Additionally, jump 
instructions do not affect %eflags. Therefore, the zero flag will maintain its state across the jump, 
and we don’t actually need to do the addition. However, that’s a lot to follow if you are a new 
assembly language programmer, so I thought I would make it simpler and just repeat the addq 
instruction each time through the loop.
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After the cmpq instruction sets the flags, there are corresponding jump instructions 

that will test one or more of these flags to see whether or not it should jump. Given the 

command cmpq ARG1, ARG2

je will jump if ARG2 equals ARG1.

jne will jump if ARG2 does not equal ARG1.

ja will jump if ARG2 is above (greater than) ARG1.

jae will jump if ARG2 is above (greater than) or equal to ARG1.

jb will jump if ARG2 is below (less than) than ARG1.

jbe will jump if ARG2 is below (less than) or equal to ARG1.

Note that the order of the arguments is backward than what you might expect. 

Other conditional jump instructions are available as well, based on a variety of flag 

configurations, but are not especially helpful for beginners.

5.4  Other Conditional Instructions
The suffixes on the jump instruction—e, ne, a, ae, b, be, and others—are known as 

condition codes. In addition to conditional jumps, the instruction set has other 

conditional instructions which utilize these condition codes.

The cmov family of instructions perform conditional moves. It works just like the mov 

family of instructions, but is based on the same kinds of conditions that the conditional 

jump instructions use. For instance, cmovgq %rax, %rbx will move the contents of %rax 

into %rbx if the previous comparison determined a “greater than” condition. Likewise, 

cmovleq %rax, %rbx will do the same move if it was a “less than or equal” condition.

The loop family of instructions combines several actions into one. What loopq does 

is the following:

 1. Decrement %rcx.

 2. Jump to the specified label if the result of the decrement is not zero.

The %rcx register is known as the “counter” register, because of instructions like 

loopq which use it to do special count-based actions.
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To see the instruction in action, here is the same program again, but this time using a 

loopq instruction:

exponentloop.s

.globl _start

# This will calculate 2^3.

# You can modify %rbx and %rcx to calculate

# another exponential.

.section .text

_start:

    # %rbx will hold the base

    movq $2, %rbx

    # %rcx will hold the current exponent count

    movq $3, %rcx

    # Store the accumulated value in rax

    movq $1, %rax

    # If the exponent is equal to zero, we are done

    cmpq $0, %rcx

    je complete

mainloop:

    # Multiply the accumulated value by our base

    mulq %rbx

    # Decrement %rcx, go back to loop label if %rcx is

    # not yet zero

    loopq mainloop

complete:

    # Move the accumulated value to %rdi so we can return it

    movq %rax, %rdi

    # call the "exit" system call

    movq $60, %rax

    syscall
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Note that the loopq instruction allows the loop to be extremely short. The instruction itself 

is doing most of the work. It is acting as a conditional control, managing the value of %rcx, and 

defining the boundaries of the loop. Therefore, the whole loop is just two instructions.

Note that the idea behind this instruction is that it jumps if it is still in the loop and 

doesn’t jump if you exit the loop. Therefore, this instruction is usually at the tail end 

of a loop. If your loop requires a condition to enter the loop, that is usually done at the 

beginning. In our case, we check whether %rcx is zero at the very beginning.

There are also two variants, loopeq and loopneq. These read the %eflags register to 

give additional conditions to continue looping. loopeq will only continue the loop (i.e., 

perform a jump) if the previous comparison resulted in equality (i.e., if the zero flag is 

set). loopneq will only jump if the previous comparison resulted in inequality (i.e., the 

zero flag is not set).

5.5  A Note About Looping and Branching 
in Assembly Language

Branching and looping is one area that tends to confuse assembly language 

programmers who come to assembly language after using other programming languages 

first. The reason for this is that other programming languages tend to put fences around 

blocks of code. A for loop functions as a unit, with the start and end of the loop well 

defined and the control variables spelled out.

In assembly language, however, each instruction is an island unto itself. Many 

instructions, such as loopq, are built for the purpose of helping you write loops, but 

there is nothing in assembly language that forces you to use the instructions that way. 

You could use loopq to decrement %rcx and jump if %rcx is not zero for some non-loop- 

related reason if you wanted to.

The point is that there is nothing in the language itself that maintains the connection 

between parts of a loop. You have to maintain that connection by jumping to the right 

place in your jump, conditional jump, or loop instruction. There are no guardrails in 

assembly language that make sure you do the right thing.

Because of this, conditionals and loops in assembly language can indeed get 

messy. In fact, one of the main motivators of higher-level languages was to prevent 

the messiness of assembly language-style programming, with its proliferation of jump 

instructions. Historically, many programming languages had a GOTO statement which 

would perform similar to assembly language jumps. However, it caused code to get so 
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messy that it was essentially taken out of most programming languages, and, for those 

languages that left it in, programmers were shunned who used it.4

Nonetheless, for assembly language, that’s literally all that we have! The best solution 

for assembly language programming is to use spacing, labels, and comments in your 

code to make it clear what your code is doing and why.

 Exercises

 1. Create your own version of followthejump.s. Walk through the 

code yourself to be sure you know what it is going to do. Then step 

through it with the debugger to make sure it does what you expect.

 2. Create a program that just loops a certain number of times and 

then exits. Approximately how many times does it have to loop 

before it takes a full second to run? This number will be very large. 

Can you estimate how many instructions the CPU executed in that 

time period?

 3. Modify the program exponentloop.s several times, each time 

making it raise a different number to a different power.

 4. Even though we have already learned about the mulq instruction, 

write a program that will multiply two numbers by repeatedly 

adding in a loop.

 5. Write a program that starts with a value in a register and yields a 

1 if that number is even and 0 if that number is odd (hint—think 

about the divq instruction and remainders).

 6. Implement the previous program by counting down in a loop 

rather than using the divq instruction.

4 The debate about the use of GOTO statements in computer programming stretches back to 
the 1960s, with Edsger Dijkstra’s letter in Communications of the ACM titled “Go To Statement 
Considered Harmful.” There are a many people who remain in favor of limited usage of GOTO 
statements, but only for a very limited set of circumstances where they make code clearer.
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CHAPTER 6

Working with Data 
in Memory
While registers store the values that the CPU is actively processing, most of a program’s 

data is in main memory, not in registers. In this chapter, we will learn the basics of how 

to access main memory in assembly language.

6.1  Adding Fixed-Length Data Sections 
to Programs

To begin with, we will look at adding fixed-length data sections to programs.

Data sections are marked in code with the command .section .data. This will 

allow you to add fixed-length data sections to your program. Within the data section, we 

name the memory storage for our data using labels (similar to our existing _start label) 

and then write the initial values that will be stored in that memory.

The following code will allocate and initialize three quadwords of data. It will add 

two of them together and store the result in the final location.

simpledata.s

.globl _start

.section .data

first_value:

    .quad 4

second_value:

    .quad 6

final_result:

    .quad 0

https://doi.org/10.1007/978-1-4842-7437-8_6#DOI
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.section .text

_start:

    # Load values into registers

    movq first_value, %rbx

    movq second_value, %rcx

    # Perform the computation

    addq %rbx, %rcx

    # Store results into memory

    movq %rcx, final_result

    # Return the value to the operating system

    movq $60, %rax

    movq final_result, %rdi

    syscall

After telling the assembler that we are in the data section, we then added the label 

first_value (followed by a colon). What that does is basically bookmark that location 

in memory. Whatever the memory address of the next line winds up being, that’s what 

first_value will refer to.

So what is after first_value? The .quad directive tells the assembler that the values 

that follow will all be sized as quadwords (64 bits or 8 bytes). Other sizes are available, 

such as .byte for individual bytes (see Chapter 13 for more details). So, .quad 4 means 

that the assembler will allocate a single quadword and store the value 4 there. You can 

actually put any number of values after the .quad directive, and it will store them each as 

a separate quadword sequentially in memory. The address of where this is loaded can be 

referred to using the label first_value.

Using similar reasoning, you can see that second_value is the address of the next 

memory location, which will hold a 6. Finally, final_value is the address of the next 

memory location, which will start by holding a zero, but which we will modify in the 

program.

In order to manipulate the data, we have to move it into registers. In the x86-64 ISA, 

for the mov family of instructions (i.e., movb, movw, movl, and movq), one (but not both!) 

of the operands to the instructions can be a memory location. Therefore, if we want to 
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manipulate first_value and second_value, the general process is to first load them into 

registers, then manipulate them, and then store them back into memory.

The instruction movq first_value, %rbx tells the assembler to move the data from 

the location specified by the address that first_value refers to and store it in %rbx. Note 

that there is no dollar sign in front of first_value. That’s because first_value doesn’t 

refer to the value 6 itself, but to the address of the memory where first_value is stored. If 

you use a number without a dollar sign in assembly language, it is treated as an address 

of memory, rather than a value. Even though first_value doesn’t look like a number, 

underneath the covers, it actually is just a number. It’s just that we don’t care what the 

specific value of it is; we only care that it is tied to the memory location.

We then load the second value into %rcx with the command movq second_value, 

%rcx. Now that they are both in registers, we can manipulate them. The program simply 

adds them together. It then stores the result in the location specified by final_value.

After this, we are now ready to return to the operating system. We load the exit 

system call number into %rax and then load the final value from its memory location into 

%rdi. Finally, we call syscall to perform the exit.

One thing to note is that this program, like many programs in this book, is 

intentionally inefficient in order to demonstrate various features of assembly language. 

We are using toy programs, so I try to move data around a little bit more and be a little 

inefficient so that you have more to bite your teeth into.

In any case, see the following to see a shorter version of this same program (only four 

instructions rather than seven):

simpledatashort.s

.globl _start

# Program Data

.section .data

first_value:

    .quad 4

second_value:

    .quad 6

.section .text

_start:

    # Load values into registers
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    movq first_value, %rdi

    # Perform the computation

    addq second_value, %rdi

    # Return the value to the operating system

    movq $60, %rax

    syscall

In this version, since the final register that everything needs to be in is %rdi, we will 

use that register to store the intermediate values as well. Therefore, the first instruction 

loads the memory directly into %rdi. On the second instruction, rather than loading the 

second addition operand to a register, we are simply directly adding it to %rdi.1 Many 

instructions (not just the mov family) can work with one of the operands being a memory 

location. Therefore, we just accessed the memory directly and added it to %rdi, which 

also stored the result in %rdi. Now all that’s left to do is load exit’s system call number 

into %rax and issue the syscall instruction.

6.2  Memory Addressing Modes
Single values are all well and good, but usually data comes in bigger packages than that.

Let’s look at a case where we need to access a whole set of numbers in sequence 

(known as an array). Let us say that we want to find the largest value of a set of numbers. 

To create the set of numbers in the data section, we would put the following in our code:

mynumbers:

    .quad 5, 20, 33, 80, 52, 10, 1

This creates storage for seven numbers and initializes their values. It also creates a 

label for the address of the first value: mynumbers. There’s just one problem—there is no 

way for the program to tell where the numbers stop. Remember that memory is just one 

1 The question of whether to access memory values directly or load them into registers first is a 
tricky decision. Generally, if you are going to do more than one thing with them, it is better to 
load it into a register first, because every memory access takes additional time. However, if you 
are only doing a single operation with the value, skipping the register removes an extraneous 
instruction from the process. There are also additional considerations in Appendix I that you can 
take into account.
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memory address after another. The CPU doesn’t know where things start and end, so our 

code has to tell it when to stop.

There are three common ways for telling the computer where the stopping point is:

 1. Have a special value (called a sentinel value) that means “stop.”

 2. Have a memory location before the actual start of the data that 

tells the number of elements of the array.

 3. Mark the end of the array with another label.

The first way is usually the easiest to program, but comes at the cost of having a 

value that can’t be used in the normal way (i.e., your sentinel value can’t actually be a 

data value that you could hit). The second way is the most flexible, because, when we 

get to functions, it allows for variably sized arrays easier. The third way is slightly easier 

to program, but it is usually only workable in very limited circumstances (such as toy 

programs like the ones we are writing).

We will adopt choice number 2—we will have a memory location that tells the 

number of elements of the array. Therefore, our data section will look like this:

numberofnumbers:

    .quad 7

mynumbers:

    .quad 5, 20, 33, 80, 52, 10, 1

So, in this case, each value is quadword sized. numberofnumbers stores the number of 

elements in our array, and mynumbers marks the start of the array.

What we are going to do is create a loop which iterates through each element in the 

array and checks to see which one is the largest. However, so far, we have only learned 

how to access values that occur at a label. How will we access the ones beyond it? The 

answer is that assembly language contains multiple addressing modes. An addressing 

mode is essentially the way that the CPU finds a value for an instruction.

We have already been using addressing modes; we just didn’t call them that. The 

addressing modes we have used so far include

Immediate mode: This is when we put the value of interest 

directly in the instruction. For instance, in movq $5, %rax, the $ 

indicates that it should use immediate mode. That is, the value is 

contained within the instruction itself.
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Register mode: This is when we are referring to a register to find 

or store a value. In movq $5, %rax, the %rax is a register.

Direct memory mode: This is when we are referring to a value by 

its address. The address itself is part of the instruction. When we 

did movq first_value, %rbx, first_value is a direct memory 

address.2

However, there are many more addressing modes available. The one we will look at 

in this section is known as register indirect mode. In this addressing mode, a register 

holds the value of the address to access. So, let’s say that %rbx held a memory address, 

and we wanted to take the contents of that memory address and move it to %rax. The 

command for this is movq (%rbx), %rax. If %rbx contains an invalid memory address, 

you’ll either wind up with junk in %rax, or if the memory location just doesn’t exist at all, 

it will cause an error and the program will abort.

Figure 6-1 shows this addressing mode visually.

2 Note that first_value just becomes a number when the assembler runs. It refers to the 
particular memory location, and we are treating it as an address. However, if we added a dollar 
sign in front of it, then it would be treated just as an immediate-mode number.

Figure 6-1. A Visual Representation of Register Indirect Addressing Mode
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Note that in this drawing, lower memory addresses are drawn toward the top of the 

drawing.

So, to demonstrate the usage of the register indirect addressing mode, let’s make use 

of it to find the largest value in our array. What we will do is load the value of the address 

of our array into a register and then use register indirect addressing to access the values 

themselves. When we want to access the next value, we simply add 8 to the register that 

contains the address (remember, quadwords are 8 bytes long, so the next value will be 8 

bytes after the current one). We will use a counter to make sure we don’t go beyond the 

end of the array.

largestvalue.s

.globl _start

.section .data

# How many data elements we have

numberofnumbers:

    .quad 7

# The data elements themselves

mynumbers:

    .quad 5, 20, 33, 80, 52, 10, 1

### This program will find the largest value in the array

.section .text

_start:

    ### Initialize Registers ###

    # Put the number of elements of the array in %rcx

    movq numberofnumbers, %rcx

    # Put the *address* of the first element in %rbx

    movq $mynumbers, %rbx

    # Use %rdi to hold the current-high value

    movq $0, %rdi

    ### Check Preconditions ###

    # If there are no numbers, stop
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    cmp $0, %rcx

    je endloop

    ### Main Loop ###

myloop:

    # Get the next value (currently pointed to by %rbx)

    movq (%rbx), %rax

    # If it is not bigger, go to the end of the loop

    cmp %rdi, %rax

    jbe loopcontrol

    # Otherwise, store this as the biggest element so far

    movq %rax, %rdi

loopcontrol:

    # Change the address in %rbx to point to the next value

    addq $8, %rbx

    # Decrement %rcx and keep going until %rcx is zero

    loopq myloop

    ### Cleanup and Exit ###

endloop:

    # We're done - exit

    movq $60, %rax

    syscall

Notice these two instructions: movq numberofnumbers, %rcx and movq $mynumbers, 

%rbx. Both of these reference memory locations. However, the first one is using direct 

addressing mode. It is taking the contents of the memory at the memory address labeled 

by numberofnumbers and moving them into %rcx. The second one, however, is prefixed 

with a dollar sign. That means that the memory address itself is being used as an 

immediate-mode value. In other words, the address itself is being loaded into %rbx.

So, whatever address mynumbers referred to, that address is now in %rbx. Therefore, 

later on, we can use (%rbx) to refer to the contents of that memory address.
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In the main program, what we are doing is (a) loading the next value into %rax, (b) 

comparing it with our current maximum value in %rdi, and then, if it is less than or equal 

to what is already there (i.e., it isn’t bigger than the current maximum value), skipping 

the instruction that moves the %rax into %rdi.

The loopcontrol segment of code then does two things. First, it advances %rbx to 

point to the next value. It does this by adding 8 (the size of a quadword) to %rbx. Then, 

the loopq instruction decrements %rcx and then checks to see if we have gotten to the 

end (i.e., %rcx is zero). If we haven’t, then it takes us back to myloop.

6.3  General Addressing Mode Syntax
Technically, you can do everything you need with register indirect addressing mode. 

Since you can store the address in a register, and you can do arithmetic on the register, 

that’s all that’s required. However, to make life easier (and programs faster), there are 

other addressing modes available.

However, all the memory addressing modes can be combined into a generalized 

addressing mode syntax. That is, they will all be written the same way, just with some 

parts left out for different modes. The general syntax for accessing memory is

VALUE(BASEREG, IDXREG, MULTIPLIER)

In this, VALUE is a fixed value, BASEREG and IDXREG are registers, and MULTIPLIER is a 

fixed multiplier, which can be 1, 2, 4, or 8 (it is 1 if left out).

The memory address that this refers to is calculated as follows:

address = VALUE + BASEREG + IDXREG * MULTIPLIER

Figure 6-2 shows how this works visually.
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Note that in this drawing, lower memory addresses are drawn toward the top of the 

drawing.

If a piece is left out, it is assumed to be zero (except for MULTIPLIER, which is 

assumed to be one). So, when we were doing direct addressing mode, the only part of 

this we used was VALUE. When we were using register indirect mode, the only part of this 

we used was (BASEREG).

To see this in action, we will show a variant of the program to find the largest value. 

This one will only use %rbx as an index into the array. An index simply tells which value 

in the array to access. So, if %rbx is 0, that is the first element (indexes start counting at 

zero). If %rbx is 1, that is the second element, and so on:

Figure 6-2. A Visual Depiction of How the Generalized Addressing Mode Syntax 
Works
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largestvalueindex.s

.globl _start

.section .data

# How many data elements we have

numberofnumbers:

    .quad 7

# The data elements themselves

mynumbers:

    .quad 5, 20, 33, 80, 52, 10, 1

### This program will find the largest value in the array

.section .text

_start:

    ### Initialize Registers ###

    # Put the number of elements of the array in %rcx

    movq numberofnumbers, %rcx

    # Put the index of the first element in %rbx

    movq $0, %rbx

    # Use %rdi to hold the current-high value

    movq $0, %rdi

    ### Check Preconditions ###

    # If there are no numbers, stop

    cmp $0, %rcx

    je endloop

    ### Main Loop ###

myloop:

    # Get the next value of mynumbers indexed by %rbx

    movq mynumbers(,%rbx,8), %rax

    # If it is not bigger, go to the end of the loop

    cmp %rdi, %rax

    jbe loopcontrol
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    # Otherwise, store this as the biggest element so far

    movq %rax, %rdi

loopcontrol:

    # Move %rbx to the next index

    incq %rbx

    # Decrement %rcx and keep going until %rcx is zero

    loopq myloop

    ### Cleanup and Exit ###

endloop:

    # We're done - exit

    movq $60, %rax

    syscall

The memory lookup in this program is movq mynumbers(,%rbx,8), %rax. According 

to the preceding formula, this will take %rbx (the index); multiply it by the multiplier, 

which is 8 (because each value is 8 bytes long); and add it to mynumbers. This will be the 

address that it uses to access the memory. BASEREG in the preceding formula is missing, 

so it is assumed to be zero.

While this is a fairly straightforward modification of the original program, assembly 

language allows us to think about programs differently and optimize them so that 

the program follows the thinking patterns of the computer. The instruction set we are 

working with likes to count down to zero (because of the loop family of instructions). We 

normally think about going from the start of the array to the end, but what if we went the 

other way? What if we went from the end of the array back to the beginning?

In this case, %rcx could do double duty as both the counter and the index! This 

removes two instructions from the code, one of which is in our loop.

The only problem with this is that %rcx would be an index from 1 to 7, while 

our previous index (%rbx) was from 0 to 6. Therefore, we will have to subtract 8 (one 

quadword) from the value (mynumbers) to account for this. That’s okay, because the 

assembler knows how to do this and will do it for us.
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The code for this is as follows:

largestvaluercx.s

.globl _start

.section .data

# How many data elements we have

numberofnumbers:

    .quad 7

# The data elements themselves

mynumbers:

    .quad 5, 20, 33, 80, 52, 10, 1

### This program will find the largest value in the array

.section .text

_start:

    ### Initialize Registers ###

    # Put the number of elements of the array in %rcx

    movq numberofnumbers, %rcx

    # Use %rdi to hold the current-high value

    movq $0, %rdi

    ### Check Preconditions ###

    # If there are no numbers, stop

    cmp $0, %rcx

    je endloop

    ### Main Loop ###

myloop:

    # Get the next value of mynumbers indexed by %rbx

    movq mynumbers-8(,%rcx,8), %rax

    # If it is not bigger, go to the end of the loop

    cmp %rdi, %rax
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    jbe loopcontrol

    # Otherwise, store this as the biggest element so far

    movq %rax, %rdi

loopcontrol:

    # Decrement %rcx and keep going until %rcx is zero

    loopq myloop

    ### Cleanup and Exit ###

endloop:

    # We're done - exit

    movq $60, %rax

    syscall

As mentioned, the address lookup was modified to be movq mynumbers-8(,%rcx,8), 

%rax. So, since mynumbers is known by the assembler (it is whatever address the 

assembler assigns to that data), the assembler can also subtract 8 and encode that 

number into the instruction. The subtraction here is not done by the CPU when it runs, 

it is done at the time of assembly. Again, the reason for this is that, unlike the previous 

program, %rcx is going to be 1 through 7, not 0 through 6. Therefore, if we didn’t adjust it, 

it would start at the second element and run past the end of the array.

6.4  More Addressing Modes
While the general formula VALUE(BASEREG, IDXREG, MULTIPLIER) covers all of the 

bases technically, many of the ways that this is used have specific names. As we’ve 

already mentioned, using just VALUE alone is the direct addressing mode, and using 

(BASEREG) is the register indirect addressing mode. Other common modes include

Indexed mode: This is the mode we used in the previous 

program. Here, VALUE represents the address of an array, and 

IDXREG represents the index to the array, with MULTIPLIER 

representing the size of each array element. BASEREG is left out.

Base pointer mode: This is also referred to as displacement 
mode. In this mode, BASEREG is known as the base pointer, and 

VALUE, rather than being an address, is a fixed offset from BASEREG 
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(either positive or negative—negative values are fully supported 

here). This is a very common mode which we will get into shortly, 

but we don’t quite know enough to understand its usage.

Base pointer indexed mode: This mode makes use of all of the 

different components of the general formula. BASEREG is a register 

that points to a location; the location is offset by VALUE and then 

indexed by IDXREG, which is multiplied by MULTIPLIER. This is 

illustrated in Figure 6-2.

Program counter (PC)–relative addressing mode: This 

mode will be discussed in Chapter 15. It is just listed here for 

completeness.

One other instruction I want to leave you with in this section is the leaq instruction. 

This instruction means “load effective address.” What it does is this—given a general 

formula for memory as given earlier, leaq, rather than load the contents of the memory 

at this location, will calculate the final address and store the address itself into the 

destination register.

This can be useful for a variety of reasons. You may need to do more than one 

calculation on the address of a piece of memory. Alternatively, you may do it just for 

easier to read code. In the first version of the largestvalue.s program, we loaded the 

pointer to our array into %rbx like this: movq $mynumbers, %rbx. There’s nothing wrong 

with that, but someone may not see the dollar sign and therefore may not realize that 

you are loading the address into %rbx, not the value at the address. Using leaq makes 

this more obvious. If you issued the instruction leaq mynumbers, %rbx, then it is more 

obvious from the instruction itself that you are trying to load an address into %rbx. After 

all, that’s what leaq actually stands for.

Important Note there is one important limitation to keep in mind about all 
of these instructions. While memory references can be used as the source or 
destination of many different instructions, they cannot be used for both the source 
and the destination. one of those has to be a register or an immediate-mode value.

Chapter 6  Working With Data in MeMory



74

 Exercises

 1. Play with the values that you are looking through. Modify them, 

add more values, remove values, etc. Be sure to set the value in 

numberofnumbers to be the correct number of elements.

 2. Make a mistake! Modify the value in numberofnumbers to be 3. 

What happens? Why?

 3. Make a mistake! Modify the value in numberofnumbers to be 

greater than 1000. What happens? Why?

 4. Rewrite each of the programs in this chapter to look for the 

smallest value, not the largest value.

 5. Write a new program to search an array for a value. In addition to 

having values in memory like numberofnumbers and mynumbers, 

have another value that is the number you are searching for. Write 

a program to give back 1 if the value is found and 0 if it is not 

found. Test it with several values.

 6. Rewrite the previous program so that it gives back the index of the 

value, if found.
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CHAPTER 7

Data Records
7.1  Laying Out Data Records
Now that we know some data access techniques, we can now learn about how to store 

records (also known as structs or structures). A record is just a well-defined segment 

of data. Remember, everything in the computer is just numbers. Therefore, if we want 

to store multiple things about an entity, we need to know where these bits of data are. 

Because of this, we define how the data will be laid out in memory, and that is the record 

format.

Let’s say that we want to store records about people. Character data is harder, so we 

will address that later. However, let’s say that we want to store each person’s age, height, 

weight, and hair color. We would define a record layout for this.

But first, how do we store hair color? Remember, everything in the computer is a 

number. Therefore, we will just define a number to represent each color. We will say that 

red is 1, brown is 2, blonde is 3, black is 4, and white is 5 (if I’ve left your hair color out, 

you have my apologies, but feel free to define your own values!). I assigned those values 

arbitrarily—you can have the numbers mean whatever you wish. The point is that since 

everything is a number, we have to assign some number to represent those values.

Now, we have to define what this record will look like in memory. Because our 

experience is limited to integers, and it is easiest dealing with quadwords, we will lay out 

the record as follows:

 1. One quadword for the person’s weight (in pounds)

 2. One quadword for the person’s hair color

 3. One quadword for the person’s height (in inches)

 4. One quadword for the person’s age (in years)
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So, for instance, to represent myself, I would be .quad 280, 2, 72, 44 (280 pounds, 

brown hair, 72 inches tall, and 44 years old). Again, the computer has no way of knowing 

what these numbers mean; it only knows how your code uses them. Therefore, you have 

to define ahead of time what the values mean and how they are laid out in memory so 

you can know how to use them.

Figure 7-1 shows how this looks in memory.

Figure 7-1. How Our Person Data Record Is Laid Out in Memory

Note that in this drawing, lower memory addresses are drawn toward the bottom of 

the drawing.
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7.2  Creating Constants with .equ
In order to simplify your life, it is helpful to create constants which can be used as offsets 

into the record to make loads and stores easier. A constant is a value that never changes. 

It is a number that is defined once, and then you can reference that constant by name. 

The labels we are using are themselves constants. They are just constants where the 

assembler decides what value they will refer to. You can also make constants where you 

decide what value they will refer to.

Constants are declared using the .equ directive. This defines a constant for the 

assembler. For instance, if I wrote the line .equ MYCONSTANT, 5, then, anywhere I wrote 

MYCONSTANT, the assembler would substitute the value 5. In the GNU Assembler, you can 

define a constant before or after it is used. In fact, as we will see shortly, you can even 

define it in another file, as long as the constant is marked as global (using the .globl 

directive), and the files are linked together.

In our case, it will be useful to define constants that tell how far each field is from 

the start of the record. For instance, since the person’s weight is the first value, the offset 

from the start of the record is zero. Therefore, we might define a constant like HEIGHT_

OFFSET and set it to 0. The person’s hair color is a quadword (8 bytes) into the record. 

Therefore, we might define a constant like HAIR_OFFSET and set it to 8. Likewise, HEIGHT_

OFFSET would be 16 and AGE_OFFSET would be 24.

In code, this would look like the following:

.equ WEIGHT_OFFSET, 0

.equ HAIR_OFFSET, 8

.equ HEIGHT_OFFSET, 16

.equ AGE_OFFSET, 24

If we want to share all of these constants with other files, we can mark them all global 

at once like this:

.globl WEIGHT_OFFSET, HAIR_OFFSET, HEIGHT_OFFSET, AGE_OFFSET

You may be wondering how we will use these. Well, let’s say that we have the address 

of our record stored in %rbx, and we want to get the value of the person’s age and put it in 

%rax. We could do that with the command movq AGE_OFFSET(%rbx), %rax. Since we are 

using VALUE and BASEREG from the general addressing mode syntax, the final address is 

VALUE + BASEREG, which is the address of the age field of our record.
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Interestingly, when you make constants, you can also include some basic 

calculations in them—even involving other constants! As long as the calculation is 

simple (add, subtract, multiply, divide), the assembler will handle the computation for 

you. So, for instance, I could have defined my offsets like this:

.equ WEIGHT_OFFSET, 0

.equ HAIR_OFFSET, WEIGHT_OFFSET + 8

.equ HEIGHT_OFFSET, HAIR_OFFSET + 8

.equ AGE_OFFSET, HEIGHT_OFFSET + 8

Which way you choose to declare your offsets—either explicitly (as in the first case) 

or having the assembler calculate the offset in comparison to the previous offset (as in 

the second case)—depends on your own style. The assembler doesn’t care at all.

A really neat trick you can do with this is to calculate the number of bytes between 

two labels in your program. Since the labels are themselves constants, and the assembler 

can do arithmetic with constants, if you subtract two memory address labels, it will give 

you the number of bytes between them. If the labels are of the start and end of a set of 

records, you can then divide this number by the record size and have the assembler 

auto-calculate the number of records you have. This way, rather than having to keep 

count of your records, the assembler will do it for you.

Here’s an example:

.equ PERSON_RECORD_SIZE, 32

numpeople:

    # Calculate the number of people in array

    .quad (endpeople - people)/PERSON_RECORD_SIZE

people:

    # Array of people

    .quad 250, 3, 75, 24

    .quad 250, 4, 70, 11

    .quad 180, 5, 69, 65

endpeople:

So, in this snippet, you can see that the people label marks the starting memory 

address of the data and the endpeople label marks the memory address that immediately 

follows. Therefore, subtracting them will give the total number of bytes. If we divide it by 

the record size (which we defined in PERSON_RECORD_SIZE), that tells us the total number 
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of records between those two markers. Here, we store that value in a memory location 

marked with the label numpeople.

7.3  Splitting Up Your Program
We are going to write several programs that operate on the same pieces of data. In order 

to avoid having to retype all of the data sections (and other parts of the code), we are 

going to have to split our programs up into multiple files.

The first file we will code will simply be the data records themselves. We will call 

this file persondata.s, and it will just contain the records of the people and information 

about how to access different parts of the record. Many pieces of this file should seem 

familiar from previous sections of this chapter.

persondata.s

.section .data

.globl people, numpeople

numpeople:

    # Calculate the number of people in array

    .quad (endpeople - people)/PERSON_RECORD_SIZE

people:

    # Array of people

    .quad 200, 2, 74, 20

    .quad 280, 2, 72, 44 # me!

    .quad 150, 1, 68, 30

    .quad 250, 3, 75, 24

    .quad 250, 2, 70, 11

    .quad 180, 5, 69, 65

endpeople: # Marks the end of the array for calculation purposes

# Describe the components of the struct

.globl WEIGHT_OFFSET, HAIR_OFFSET, HEIGHT_OFFSET, AGE_OFFSET

.equ WEIGHT_OFFSET, 0

.equ HAIR_OFFSET, 8

.equ HEIGHT_OFFSET, 16

.equ AGE_OFFSET, 24
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# Total size of the struct

.globl PERSON_RECORD_SIZE

.equ PERSON_RECORD_SIZE, 32

This file will only need to be assembled once:

as persondata.s -o persondata.o

This will create an object file that contains the data records and the constants, but 

nothing else. We will combine this with our code when we later link the files together. 

So far, we have only had one file to link, so the link stage may have seemed superfluous. 

However, when we start incorporating multiple files, the link stage starts to make more 

sense. Each assembly listing gets assembled into its own object file, and all the object 

files get linked together at the end to make a final executable.

Notice that we declared the label people as being global with .globl people. This 

means that it will be available to other object files during the linking stage. So, if I refer 

to people in another assembly language file, it will resolve the meaning of that when it 

links the files together.

Now, let’s write a simple program which finds the tallest person in the file and exits 

with their age. Note that this file doesn’t include any of the data, or even the constants 

that we defined previously.

tallest.s

.globl _start

.section .text

_start:

    ### Initialize Registers ###

    # Pointer to first record

    leaq people, %rbx

    # Record count

    movq numpeople, %rcx

    # Tallest value found

    movq $0, %rdi

    ### Check Preconditions ###
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    # If there are no records, finish

    cmpq $0, %rcx

    je finish

    ### Main Loop ###

mainloop:

    # %rbx is the pointer to the whole struct

    # This instruction grabs the height field

    # and stores it in %rax

    movq HEIGHT_OFFSET(%rbx), %rax

    # If it is less than or equal to our current

    # tallest, go to the next one.

    cmpq %rdi, %rax

    jbe endloop

    # Copy this value as the tallest value

    movq %rax, %rdi

endloop:

    # Move %rbx to point to the next record

    addq $PERSON_RECORD_SIZE, %rbx

    # Decrement %rcx and do it again

    loopq mainloop

    ### Finish it off ###

finish:

    movq $60, %rax

    syscall

We can now assemble this into an object file as follows:

as tallest.s -o tallest.o

We now have two object files—persondata.o and tallest.o. We can use the linker 

to combine them together like this:

ld persondata.o tallest.o -o tallest
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This creates the executable file tallest from the previous two files. This executable 

can be run just as before:

./tallest

echo $?

If you did everything correctly, it should give 75.

7.4  Sharing Data with Another Program
The next program will do something a little different. It will count the number of brown- 

haired people in our data. The code for this is as follows:

browncount.s

.globl _start

.section .text

_start:

    ### Initialize Registers ###

    # Pointer to first record

    leaq people, %rbx

    # Total record count

    movq numpeople, %rcx

    # Brown-hair count

    movq $0, %rdi

    ### Check Preconditions ###

    # if there are no records, finish

    cmpq $0, %rcx

    je finish

    ### Main Loop ###

mainloop:

    # Is the hair color brown (2)?

    cmpq $2, HAIR_OFFSET(%rbx)
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    # No?  Go to next record

    jne endloop

    # Yes?  Increment the count

    incq %rdi

endloop:

    addq $PERSON_RECORD_SIZE, %rbx

    loopq mainloop

finish:

    movq $60, %rax

    syscall

We can then assemble it and link it with the persondata.o file that we already have:

as browncount.s -o browncount.o

ld persondata.o browncount.o -o browncount

You can now run the program.

7.5  Changing the Data Record Layout
One of the great things about using constants for your offsets is that if you ever want to 

change your data layout, it is easy to do so without breaking your program. Let’s say, for 

instance, that we wanted to add a new field to our data—the person’s shoe size. Let’s also 

say that we want this to be the second field in the record.

Now, if we had just hard-coded offsets into our programs instead of using constants, 

doing this would require that we go and find these offsets and rewrite them based on 

the new record format. This would be especially hard, because we would have to think if 

each occurrence of 16 referred to the HEIGHT_OFFSET or something else. By naming your 

constants, it is clear what their function is in the program.

The following is a modification of persondata.s, now called persondataexpanded.s. 

This file adds the shoe size field to the data records and modifies the constants to reflect 

the new record layout. However, we will not have to change our actual program code, 

tallest.s and browncount.s. They will just need to be relinked to the new data object 

file, and they will function perfectly well!
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persondataexpanded.s

.section .data

.globl people, numpeople

numpeople:

    # Calculate the number of people in array

    .quad (endpeople - people)/PERSON_RECORD_SIZE

people:

    # Array of people

    .quad 200, 10, 2, 74, 20

    .quad 280, 12, 2, 72, 44 # me!

    .quad 150, 8, 1, 68, 30

    .quad 250, 14, 3, 75, 24

    .quad 250, 10, 4, 70, 11

    .quad 180, 11, 5, 69, 65

endpeople: # Marks the end of the array for calculation purposes

# Describe the components of the struct

.globl WEIGHT_OFFSET, SHOE_OFFSET, HAIR_OFFSET, HEIGHT_OFFSET, AGE_OFFSET

.equ WEIGHT_OFFSET, 0

.equ SHOE_OFFSET, 8

.equ HAIR_OFFSET, 16

.equ HEIGHT_OFFSET, 24

.equ AGE_OFFSET, 32

# Total size of the struct

.globl PERSON_RECORD_SIZE

.equ PERSON_RECORD_SIZE, 40

To assemble, link, and run, just do

as persondataexpanded.s -o persondataexpanded.o

ld persondataexpanded.o tallest.o -o tallest

./tallest

echo $?

Try this with both the tallest example and the browncount example.
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7.6  Storing Character Data
In this section, I wanted to talk about character data. A lot of what we store and display is 

text, so knowing how the computer deals with text is important. Now, unfortunately, we 

still aren’t at the point where we can read or display text, but since we are talking about 

data, and so much data is textual data, I did want to give you a little bit of insight and 

practice with how it is stored and manipulated.

Data in computers, as we have seen, is entirely numbers. Sometimes the numbers 

represent values for data, such as height. Other times, values signify something, 

such as hair color. One thing that computers often must store are strings of letters. In 

programming, however, we rarely refer to “letters,” but rather to characters. Letters really 

only refer to the alphabetic letters. However, most users want to type more than letters—

they want spaces, numbers, punctuation marks, glyphs, etc. All of these ideas are unified 

in the concept of a character—a single, discrete glyph that can be written (or, in the case 

of spaces, not written).

Characters are represented by numbers. For instance, the letter “A” is typically 

represented by the number 65, the letter “B” is represented by the number 66, etc. 

However, remember that uppercase and lowercase letters are different characters, so 

they have their own codes, starting with “a” being represented by the number 97. This list 

of which characters are represented by which numbers is known as the ASCII code.1

ASCII was developed when 8-bit computers were prevalent and storage was limited. 

Because of this, ASCII is itself limited to single bytes. When ASCII is stored, each character 

gets a byte. This, however, limits the characters available to basically English characters.

As computers have internationalized, ASCII has become fairly limiting. In fact, 

even the notion of a “character” stretches the boundaries of some written languages. 

When you add in all these different languages, numbers, symbols, emojis, etc., 255 

characters just isn’t enough. This need for more characters prompted the development 

of Unicode, which is a standardized system for representing characters. Unicode has a 

lot of complications, and we certainly don’t want to take the time to address them now. If 

you’re interested, you can see Appendix H for more information. ASCII is much easier to 

deal with for beginners.

1 ASCII stands for American Standard Code for Information Interchange. There’s nothing special 
about it, except that the fact that everyone agrees on it makes it more useful for moving data. For 
instance, there’s an older standard called EBCDIC, where, for instance, “a” is 129, but nobody 
uses this anymore.
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Thankfully, ASCII is also compatible with the most common form of Unicode, called 

UTF-8, which was specifically built to be ASCII compatible. Therefore, your knowledge 

of ASCII will roughly transfer to working with Unicode later on. As long as you stick with 

basic English characters and punctuation, ASCII and UTF-8 are identical.

Now, since ASCII characters are single bytes, we can’t just deal with them like we 

did with quadwords and just load them into a 64-bit register. The assembler will store 

characters as bytes, and we will need to use the movb in order to get them to the right 

place. Additionally, we will need to move the characters into the byte-sized registers—

%ah, %al, %bh, %bl, %ch, %cl, %dh, and %dl.

Just like we can declare data of various sizes in assembly language, we can also 

declare textual data. To declare a bit of data as ASCII text, you use the .ascii directive.

mytext:

    .ascii "This is a string of characters.\0"

As you probably guessed, mytext is a label that refers to the memory address of the 

first character in the string (a string is a consecutive stretch of characters that belong 

together). The double quotation marks show the computer where the string starts and 

ends. However, you may be wondering what the \0 is doing.

As we mentioned in Chapter 6, when you have arrays of values, you need to know 

where the endpoint is. In that chapter, we opted to have a separate value tell us the 

length. That can work with character data, too. However, another common way to mark 

the ending of a string is with the null character. The null character has a literal value of 

0 in ASCII, and it specifically means “the end of the string.” Therefore, if your string is a 

null-terminated string (has a null character at the end), then all you need to know is 

the address of the first character. You can just process the string until you get to the null. 

The backslash tells the assembler that you are inserting a special character. \0 is the null 

character, \n is a newline, \t is a tab character, and \\ gives you a backslash itself. There 

are others as well, but those are the ones you are likely to run into.

Going back to the string, this .ascii directive is essentially the same as a .byte 

directive. If you know the ASCII codes for each letter, you can represent the preceding 

data with a .byte directive as follows:

mytext:

    .byte 84, 104, 105, 115, 32, 105, 115, 32, 97, 32, 115

    .byte 116, 114, 105, 110, 103, 32, 111, 102, 32, 99

    .byte 104, 97, 114, 97, 99, 116, 101, 114, 115, 46, 0
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While this is ugly looking, it actually is the exact same data as before. If you recognize 

that capital letters start at 65, lowercase letters start at 97, and spaces are represented by 

the code 32, you can see that these are identical. In fact, as an exercise, you should go 

through and verify that the preceding text matches the bytes just presented.

One thing that may be surprising is that digits themselves have their own codes. A 

digit is itself a written character and so, itself, has character codes, and those codes have 

little to do with the value of the numbers themselves. So, for instance, the character 0 has 

an ASCII code of 48, 1 has a code of 49, etc. As you can see, when treated as characters, 

there’s not a lot you can do mathematically with these!

One other note—you can actually write a character as a value in an assembly listing 

using single quotes. So, for instance, if I want to load the ASCII code for the letter a into 

%al, I can do it with the instruction movb $'a', %al. Don’t forget the dollar sign so the 

assembler knows to use immediate mode—otherwise, the assembler will think you are 

referring to the memory location at address 97!

The following is a program that will count the number of lowercase letters in our 

string. A lowercase letter is one that is between 97 (a) and 122 (z), inclusive.

lowercasecount.s

.globl _start

.section .data

mytext:

      .ascii "This is a string of characters.\0"

.section .text

_start:

    ### Initialization

    # Move a pointer to the string into %rbx

    movq $mytext, %rbx

    # Count starts at zero

    movq $0, %rdi

mainloop:

    # Get the next byte

    movb (%rbx), %al
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    # Quit if we hit the null terminator

    cmpb $0, %al

    je finish

    # Go to the next byte if the value isn't between a and z

    cmpb $'a', %al

    jb loopcontrol

    cmpb $'z', %al

    ja loopcontrol

    # It's lower-case! Add one to %rdi

    incq %rdi

loopcontrol:

    # Next byte

    incq %rbx

    # Repeat

    jmp mainloop

finish:

    movq $60, %rax

    syscall

As you can see, our loop is using the null character to know when to stop. So, if you 

left out the null character from the string, the program would continue until either it 

found a null character by chance or if it ran past the memory allocated to your program 

(in which case the program would crash).

Some variations you may try to this program include

 1. Count the uppercase characters.

 2. Count the non-letter characters.

 3. Count the total number of characters.
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7.7  Endianness
Technically, we could move the data into our registers in larger chunks. That is, we could 

literally move words, longs (double-words), or quadwords into our registers, thus cutting 

out a large number of memory accesses. However, to do that successfully, we have to 

know how the bytes of our registers are stored into memory. This may seem like it should 

be intuitively obvious, but intuitions differ, and, in different instruction set architectures, 

this is done in various ways.

Let’s say that we have a quadword in the following bits:

1000000011000000111000001111000011111000111111001111111011111111

Some people think that the digits should be stored such that the least significant 

digits are in the lowest numbered memory regions. However, if we did that, this would be 

stored in memory as the following byte sequence:

 1. 11111111

 2. 11111110

 3. 11111100

 4. 11111000

 5. 11110000

 6. 11100000

 7. 11000000

 8. 10000000

This is known as little endian format, because the “little end” (least significant byte) 

is stored first.

Other people think that since we think about the big end being first, we should put 

it first in memory. This is known as big endian format, because the “big end” (most 

significant byte) is stored first. This is also known as network byte order because of its 

predominance in networking protocols. Big endian is stored in memory in the following 

order:

 1. 10000000

 2. 11000000
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 3. 11100000

 4. 11110000

 5. 11111000

 6. 11111100

 7. 11111110

 8. 11111111

The x86-64 instruction set architecture is a little endian instruction set.

Now, let’s look at what would happen if we loaded the first quadword starting at 

mytext from the previous program into a quadword register, such a %rax. If we did movq 

mytext, %rax, then %rax would look like this after the instruction:

 

 

%ah %al

%eax

%rax

' ' 's' 'i' ' ' 's' 'i' 'h'  'T'




    

Now, moving the whole quadword at once to %rax makes fewer memory accesses. 

However, the only pieces of %rax that we can access as individual bytes are %al and %ah. 

What happens if we want to access the rest of the bytes individually?

The rol and ror instructions will rotate the register left and right, respectively, by the 

specified number of bits (the number bits can be specified either as an immediate-mode 

value or a value stored in a register). So, for instance, if we take the preceding value in 

%rax and issue the instruction ror $16, %rax, this will result in rotating the value 2 bytes 

(16 bits) to the right, yielding the contents of the register being as follows:

 

 

%ah %al

%eax

%rax

'h' 'T' ' ' 's' 'i' ' ' 's'  'i'


  

This allows for the next 2 bytes in the string to be accessible through %al and %ah. 

Continuing in this manner requires more code to be written, but the resulting code is 

faster because it makes fewer memory accesses. However, the code to do this is fairly 

tedious, because you have to separately code each byte access and check each individual 

byte to see if it is null and if it needs to be counted.
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Because it is so tedious, I expect few will actually code this example, but you should 

at least look through this code and recognize how it is working with the different bytes. 

The resulting code is about 5% to 15% faster. There are a lot fewer comments in the code 

so the code listing doesn’t get ridiculously long, but the labels should help you find your 

way in it:

multibytemov.s

.globl _start

.section .data

mytext:

    .ascii "This is a string of characters.\0"

.section .text

_start:

    ### Initialization

    # Move a pointer to the string into %rbx

    movq $mytext, %rbx

    # Count starts at zero

    movq $0, %rdi

mainloop:

    # Get the next quadword

    movq (%rbx), %rax

byte1:

    cmpb $0, %al

    je finish

    cmpb $'a', %al

    jb byte2

    cmpb $'z', %al

    ja byte2

    incq %rdi

byte2:

    cmpb $0, %ah

    je finish
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    cmpb $'a', %ah

    jb byte3

    cmpb $'z', %ah

    ja byte3

    incq %rdi

byte3:

    # Shift the next bytes into position

    rorq $16, %rax

    cmpb $0, %al

    je finish

    cmpb $'a', %al

    jb byte4

    cmpb $'z', %al

    ja byte4

    incq %rdi

byte4:

    cmpb $0, %ah

    je finish

    cmpb $'a', %ah

    jb byte5

    cmpb $'z', %ah

    ja byte5

    incq %rdi

byte5:

    # Shift the next bytes into position

    rorq $16, %rax

    cmpb $0, %al

    je finish

    cmpb $'a', %al

    jb byte6

    cmpb $'z', %al

    ja byte6

    incq %rdi
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byte6:

    cmpb $0, %ah

    je finish

    cmpb $'a', %ah

    jb byte7

    cmpb $'z', %ah

    ja byte7

    incq %rdi

byte7:

    # Shift the next bytes into position

    rorq $16, %rax

    cmpb $0, %al

    je finish

    cmpb $'a', %al

    jb byte8

    cmpb $'z', %al

    ja byte8

    incq %rdi

byte8:

    cmpb $0, %ah

    je finish

    cmpb $'a', %ah

    jb loopcontrol

    cmpb $'z', %ah

    ja loopcontrol

    incq %rdi

loopcontrol:

    addq $8, %rbx

    jmp mainloop

finish:

    movq $60, %rax

    syscall
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There are several instruction families that can help with endianness and similar 

byte-oriented operations (each of them having a suffix indicating the word size being 

used):

xchg: This instruction exchanges values of its two operands. It’s 

like a mov instruction, except that the values are copied to each 

other, not just in one direction.

bswap: This instruction reverses the order of bytes in the 

destination. bswapq %rax reverses the order of the bytes in %rax. 

Note that there isn’t a version of this command that works on 

word-size (16-bit) registers. This is because instead of writing 

bswapw %ax, since the bytes of the 16-bit general-purpose registers 

are available individually, you can get the same effect just by using 

xchg and saying, for instance, xchgb %ax, %al.

ror: This rotates a value right by the specified number of bits. 

rorq $16, %rcx rotates register %rcx to the right by 16 bits. In a 

rotation, anything rotated all the way off to the right comes back in 

on the left.

rol: This is the same as ror but rotates to the left.

shr: This shifts a value right by the specified number of bits. This 

is identical to ror, except that the bits that get shifted all the way 

off to the right do not come back in on the left, but instead zeroes 

get shifted in on the left-hand side.

shl: This is the same as shr, but shifts to the left.

7.8  Including Strings in Data Records
There are a lot of ways to include a string in a data record. The easiest is probably to have 

a fixed-size segment for the string, but have the string be null-terminated at an earlier 

point.
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For instance, we can add a name to our data record about a person. We could reserve 

32 bytes of storage for the name. Here is a version of the person data that includes 

names:

persondataname.s

.section .data

.globl people, numpeople

numpeople:

    # Calculate the number of people in array

    .quad (endpeople - people)/PERSON_RECORD_SIZE

people:

    # Array of people

    .ascii "Gilbert Keith Chester\0"

    .quad 200, 10, 2, 74, 20

    .ascii "Jonathan Bartlett\0"

    .quad 280, 12, 2, 72, 44 # me!

    .ascii "Clive Silver Lewis\0"

    .quad 150, 8, 1, 68, 30

    .ascii "Tommy Aquinas\0"

    .quad 250, 14, 3, 75, 24

    .ascii "Isaac Newn\0"

    .quad 250, 10, 4, 70, 11

    .ascii "Gregory Mend\0"

    .quad 180, 11, 5, 69, 65

endpeople: # Marks the end of the array for calculation purposes

# Describe the components of the struct

.globl NAME_OFFSET, WEIGHT_OFFSET, SHOE_OFFSET

.globl HAIR_OFFSET, HEIGHT_OFFSET, AGE_OFFSET

.equ NAME_OFFSET, 0

.equ WEIGHT_OFFSET, 32

.equ SHOE_OFFSET, 40

.equ HAIR_OFFSET, 48

.equ HEIGHT_OFFSET, 56

.equ AGE_OFFSET, 64
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# Total size of the struct

.globl PERSON_RECORD_SIZE

.equ PERSON_RECORD_SIZE, 72

Notice that the names were padded with additional characters after the null 

character in order to use up the space. The specific character we put there is irrelevant, 

as our string processing will always stop at the null character. However, despite the fact 

that we have 32 bytes reserved, the maximum string length is actually 31 characters, 

because we have to reserve 1 byte for the null character. If this character isn’t present, 

any code reading the strings won’t know how to stop.

The way that individual characters are accessed here is by (a) having the address 

of the record in one register (we’ll say %rbx), (b) having the index of the character you 

want to access (starting with 0) in another register (we’ll say %rcx), and then issuing an 

instruction such as movb NAME_OFFSET(%rbx,%rcx,1), %al.

Now, having a fixed-length field has problems. First of all, it imposes a maximum 

size on the name. Here, we simply can’t support names longer than 31 characters. 

Additionally, for short names, we are wasting space. If your name is “Jo Smit,” we’ve 

wasted a lot of space holding your name.

To solve both of these problems, the alternative way of storing the names is to store 

them as pointers. That is, we will store the names themselves elsewhere, where we 

can allocate the exact amount of space we need, and then store in the record itself the 

memory address where that string lives. Example data records for that are as follows:

persondatanamepointer.s

.section .data

.globl people, numpeople

numpeople:

    # Calculate the number of people in array

    .quad (endpeople - people)/PERSON_RECORD_SIZE

people:

    # Array of people

    .quad $gkcname, 200, 10, 2, 74, 20

    .quad $jbname, 280, 12, 2, 72, 44 # me!

    .quad $cslname, 150, 8, 1, 68, 30

    .quad $taname, 250, 14, 3, 75, 24

    .quad $inname, 250, 10, 4, 70, 11
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    .quad $gmname, 180, 11, 5, 69, 65

endpeople: # Marks the end of the array for calculation purposes

gkcname:

    .ascii "Gilbert Keith Chester\0"

jbname:

    .ascii "Jonathan Bartlett\0"

cslname:

    .ascii "Clist Silver Lewis\0"

taname:

    .ascii "Tommy Aquinas\0"

inname:

    .ascii "Isaac Newn\0"

gmname:

    .ascii "Gregory Mend\0"

# Describe the components of the struct

.globl NAME_PTR_OFFSET, WEIGHT_OFFSET, SHOE_OFFSET

.globl HAIR_OFFSET, HEIGHT_OFFSET, AGE_OFFSET

.equ NAME_PTR_OFFSET, 0

.equ WEIGHT_OFFSET, 8

.equ SHOE_OFFSET, 16

.equ HAIR_OFFSET, 24

.equ HEIGHT_OFFSET, 32

.equ AGE_OFFSET, 40

# Total size of the struct

.globl PERSON_RECORD_SIZE

.equ PERSON_RECORD_SIZE, 48

The drawback to this method is that it is a little more complex (and a little 

less efficient) to deal with. Rather than being able to load a character with a single 

instruction, we have to first load the address of the string into a register and then load 

the character offset. For instance, we could issue the instruction movq NAME_PTR_

OFFSET(%rbx), %rdx to load the address of the string into %rdx and then do movb 

(%rdx,%rcx,1), %al to get the character at the index specified by %rcx into %al. Pointers 

in x86-64 are themselves quadwords.
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Structuring records properly is both a science and an art. There are many, many 

ways that it can be done, each with their own benefits and drawbacks. In these days of 

large memories and fast computers, usually it is best to favor flexibility over speed or 

stinginess.

 Exercises

 1. Think about various things on the computer and how they would 

be represented as a data structure. How would the position of your 

cursor be represented? What about the pixels on your screen?

 2. Open up a preferences dialog box on your computer. Think about 

how you might create a record that would hold the kind of data 

that the preferences box is asking for.

 3. What other information might we add to our person record? 

Modify the record structure and add a field or two. Check to be 

sure the programs still run correctly.

 4. Let us say that a person might have a mother and a father that is 

in the data. How might we structure the data so that a person’s 

record links to their mother and father?

 5. Modify the browncount.s program to count anybody who has 

brown OR blonde hair.

 6. Create a program that finds the youngest age in the array.

 7. Modify the previous program so that, after finding the youngest 

age in the array, it gives back the index of the record with that age, 

rather than the age itself.

 8. Create a program that uses the data in persondataname.s and 

gives back the length of the longest name.
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CHAPTER 8

Signed Numbers and 
Bitwise Operations
So far, we have only considered values that are nonnegative integers. Technically, this is 

really what all values are underneath the covers. However, using special instructions and 

flags of the %eflags register, the CPU can treat these values as if they were different kinds 

of numbers (such as signed integers or even decimal numbers). In this chapter, we will 

look at these instructions and flags and aim to understand how the processor deals with 

these values.

8.1  Decimal, Binary, Hexadecimal, and Octal 
Numbers

Before we get to how the computer itself stores numbers, I want to talk a bit about how 

we write the numbers we are going to use in programming. As we’ve already mentioned, 

while we tend to use decimal to write numbers, the computer is actually using binary for 

everything.

If we wanted, we could write our numbers in binary as well! However, how would 

the assembler distinguish between 10 meaning a decimal ten and 10 meaning a binary 

ten (decimal two)? The way it does this is by adding a prefix to the number telling the 

assembler what base you are using. The prefix for a binary number is 0b (that’s a zero 

followed by the letter “b”). So, 10 means the decimal number ten, but 0b10 means a 

binary 10, which is 2 in decimal.

This can be extremely useful when you are interested in specific bit patterns. If you 

want a value that only has the fourth least significant bit set, that is easiest to write in 

https://doi.org/10.1007/978-1-4842-7437-8_8#DOI
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binary: 0b1000. If you care about the bits but not about the decimal number, writing in 

binary is really helpful.

Another important base for computers is base 16, known as hexadecimal. Here, 

there are 16 separate digits per place value. You have 0–9 for the first ten digits and 

then a, b, c, d, e, and f (case does not matter—you can write hexadecimal numbers 

with uppercase or lowercase characters according to preference).1 Since a follows 9, it 

means 10. f is another important one to memorize—it means 15. Then, in hexadecimal, 

when we move to the next place, instead of it being the “tens” place, it is the “sixteens” 

place. So, the number 20 in hexadecimal is 2 × 16 = 32 in decimal. The number 2C is 

2 × 16 + 12 = 44 in decimal.

The next place is 162 or 256. So, if I have the hexadecimal number AC2, that is 

10 × 256 + 12 × 16 + 2 = 2754. The next place is 163, then the next place is 164, and so on.

Why do we care about hexadecimal numbers? Well, with decimal, it is hard to 

tell from the size of the number how many bytes it takes up. For instance, how many 

bytes does the number 124,000 use? It’s 3 bytes, but it is hard to tell from the number 

itself. In hexadecimal, however, every hexadecimal digit is exactly 4 bits, and every two 

hexadecimal characters is exactly 1 byte!

Therefore, hexadecimal is often thought of as a “condensed binary.” With 

practice, you can look at a hexadecimal number and “see” what it means in binary. 

To write hexadecimal in code, you use the prefix 0x at the beginning of your numbers 

(zero followed by the letter “x”). Therefore, 0x31 means hexadecimal 31, which is 

3 × 16 + 1 = 49.

One other system which is less often used is octal (base 8). In octal, each digit 

represents 3 bits, which isn’t all that useful. However, and this is the main reason I’m 

mentioning octal, in the GNU Assembler, merely starting a number with zero switches 

to octal! Therefore, if you accidentally write 053 instead of 53, the actual value will be 

computed as 5 × 8 + 3 = 43.

Now, also remember that any immediate-mode value will need to be prefixed with a 

$. So, if you want to load %rax with the hexadecimal number 7A, you would do it like this: 

movq $0x7A, %rax.

1 Note that the hexadecimal system opens up the number system to corny jokes, especially in 
error codes. For instance, some common error codes in the history of computing have included 
0xBBADBEEF, 0xDEADDEAD, 0xCAFEBABE, and 0x8BADF00D. Usually trying to write in “hexspeak” is 
considered a little unprofessional, but that doesn’t mean it isn’t sometimes done.
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8.2  Representing Signed Integers
Having different ways of writing numbers is interesting, but, ultimately, they all get 

stored the same way—as bits in memory. Now we will get into more details on how 

the computer itself is storing and processing other types of numbers than just the 

nonnegative integers.

The first kind of number we will look at is signed integers—integers that can be 

positive or negative. If you think about it, there are several possible ways that a computer 

could store a signed value. For instance, it could reserve the first bit as the sign bit and 

then use the rest of the bits for the absolute value. The problem here is that it makes 

signed and unsigned arithmetic very different and creates a lot of special cases for the 

computer to handle.

Therefore, instead of just adding a sign bit, most instruction sets (including x86- 64),  

use the two’s complement mechanism for signed numbers. The way that two’s 

complement works is that while positive integers count up from zero, negative integers 

count back from zero.

Let’s say we were only working with a single-byte number, starting at zero 

(0b00000000). If we add one, we get 0b00000001. If we subtract one, we basically wrap 

all the way around to the other side, giving us 0b11111111. If treated as a signed byte, 

this value is -1 (it would be 255 if it were treated as an unsigned byte).2 If we subtract one 

again, we get 0b11111110 (-2 as a signed byte). Subtracting one again yields 0b11111101 

(-3 as a signed byte).

Now, ultimately, the positive and negative integers are sharing the same byte, so how 

do we know which is which? The answer is that we use the first bit to tell us if the value 

is positive or negative. If the first (i.e., most significant) bit is zero, then that means the 

value is positive, and if the first bit is one, then that means the value is negative. This 

first bit is known as the sign flag, because it marks whether or not the value is positive or 

negative. This means that roughly half of our numbers are reserved for positive numbers 

and half for negatives. For a single byte, the positive numbers are 1 through 127, and the 

2 I’m using the words “treated as” because the computer doesn’t know or care what you are 
storing in its memory or registers. It only cares which instructions you use on them. If you 
use signed instructions one time and unsigned instructions another time, you will get a weird 
answer, but, ultimately, the computer doesn’t care.
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negatives are -1 through -128.3 If you “wrap around” (i.e., adding 4 to 126 gives you 130, 

which is actually -126), this is called an overflow condition.

Two’s complement arithmetic has several interesting properties:

• Addition and subtraction are identical except how the flags are set. If 

I add 0b00000001 (+1) to 0b11111111 (-1), the result, whether using 

signed or unsigned integers, is 0b00000000. The only difference is 

whether this should indicate an overflow condition or not.4

• It is easy to tell that a number is a negative number. If the most 

significant bit is set, it is negative.

• It is easy to increase the number of bits of a number through sign 
extension. Basically, if I have an 8-bit signed number and I want 

to make it 64 bits, I can simply take the sign bit and repeat it going 

leftward until I fill up the remaining bits.

• There is a unique value for zero. If we think to our first idea for 

a number system (that we just have a sign bit), we can see that 

we would have both a negative and positive zero, which can get 

confusing.

To obtain the negative of a particular value in the two’s complement system, all 

you have to do is flip all the bits and then add one. So, if I want a -5, I first look at how 

5 is written in binary, 0b00000101. To make it negative, I first flip all the bits, yielding 

0b11111010. Finally, I add one, giving 0b11111011. This is -5 in binary.

Moving to 32-bit or 64-bit numbers is exactly the same, just with more digits. 

Negative 5 as a 64-bit number is

0b1111111111111111111111111111111111111111111111111111111111111011

The instruction to convert a positive value to a negative (and vice versa) is the neg 

family of instructions. neg instructions take a single operand which is both the source 

and destination of the operation. For instance, negq %rax will take the negative of %rax 

and store it back into %rax.

3 There is always one more of the negative numbers than the positive numbers because zero 
doesn’t have a sign flag.

4 This property is true of subtraction and multiplication as well, but it would be a distraction to 
demonstrate them.
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8.3  Additional Flags for Signed Integers
Now that we know how to work with negative numbers in binary, we need to look at 

how to get the processor to do it. For addition and subtraction, it is actually the exact 

same instruction families: add and sub. The difference is in which flags we might look 

at after the instructions. In addition to the carry flag (CF) and zero flag (ZF) which we 

introduced in Chapter 5, additional flags of interest include

OF: The overflow flag tells us that if we were intending the 

numbers to be used as signed numbers, we overflowed the values 

and now the sign is wrong.

SF: The sign flag tells us whether the sign flag (the most significant 

bit) of the result was set after the instruction. Note that this is 

not the same as if the sign flag should have been set (i.e., in an 

overflow condition).

To see the flags in action, we will look at the “byte” versions of these instructions so 

that we don’t have to write long 64-bit values.

Let’s imagine code for adding 0b01111111 (127) and 0b01111111 (127):

movb $0b01111111, %al

addb $0b01111111, %al

The result of this addition will be 0b11111110. If we were dealing with signed bytes, 

this would be a problem, because the addition causes an overflow and sets the sign bit 

when it shouldn’t. However, we can check the overflow flag (OF) to see if this occurred. 

The jo instruction will jump if the overflow flag is set, and the jno will jump if it is not set. 

You can also check the signed flag similarly, with js and jns.

You can also use the cmp family of instructions for signed comparisons as well as 

unsigned comparisons. The cmp instruction is the same, but different jump instructions 

check different flags if you are treating the values as signed instead of unsigned values. 

For the instruction cmpq ARG1, ARG2, the following occurs:

jl: Jump if ARG2 is less than ARG1.

jle: Jump if ARG2 is less than or equal to ARG1.

jg: Jump if ARG2 is greater than ARG1.

jge: Jump if ARG2 is greater than or equal to ARG1.
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While the unsigned jump evaluations (i.e., ja and jb and friends) are usually 

checking the carry flag (CF) and zero flag (ZF), the signed jump evaluations are also 

checking the sign flag (SF) and the overflow flag (OF).

8.4  Bigger Integers
Since 64 bits gives you a very large number of possible values, it is no longer often 

the case that programmers need larger values than fit in standard-sized registers. 

Nonetheless, understanding this will help understand the details of multiplication and 

division better.

If you needed bigger integers (i.e., more than 64 bits), it is fairly straightforward to 

do with multiple registers and/or multiple memory locations. Let us say that you want to 

work with 320-bit numbers (i.e., 5 quadwords big), and you wanted to add together two 

320-bit signed numbers. The basic process for this would be the following:

 1. Load the least significant 64 bits of each addend into registers.

 2. Perform an addq instruction. This will perform an addition and set 

the carry flags.

 3. Store the result.

 4. For the remaining bytes

 (a). Load in the next least significant bytes of each value.

 (b). Add them together with the adcq instruction. This instruction will not 

only add the values together, it will take into account the carry flag (CF) 

from the previous addition.

 (c). Store the result.

 5. After all the additions have occurred, check the overflow flag (OF) 

to see the result was bigger than 320 what can be kept in 320 bits.

Here, we introduced a new instruction, adcq (add with carry). As mentioned, this 

instruction not only adds the operands, it also adds the carry flag if it is set (and also sets 

the carry flags if appropriate). Note that the overflow flag only needs to be checked at the 

end. adc is setting it every time, but we only need to know the value at the very end.

So, as you can see, we can “chain together” multiple smaller values to make a  

larger value.
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8.5  Division and Multiplication
In Chapter 4, we introduced the div and mul instructions. However, since we were just 

starting out, we didn’t include a lot of detail. However, multiplication and division both 

have strange caveats that have to be taken into account.

With addition and subtraction, if a value goes beyond the space we provided, it 

will only be a single bit. Therefore, the processor can use the %eflags register to store 

the value of this bit using the carry flag (CF) and the overflow flag (OF). However, with 

multiplication, the size of the destination can double.

To see this, let’s compare the addition of the decimal numbers 999 and 999 to their 

multiplication. Here is addition:

        9   9   9

+       9   9   9

____________________

    1   9   9   8

Notice that it only extends a single digit beyond the original addends. This “extra” 

is small enough that can be stored in a single digit (which, in binary, is the carry flag in 

%eflags). Now look at multiplication:

                9   9   9

×               9   9   9

___________________________

    9   9   8   0   0   1

As you can see, multiplication has the ability to double the number of digits required!

Therefore, if we multiply two 64-bit numbers, how will the results be stored? What 

happens if the result is larger than 64 bits? To solve this problem, the CPU stores the 

result of multiplication in two registers! Previously, we mentioned that the result was 

in %rax. However, %rax is actually the least significant bits of the result. If the result 

overflows %rax, then the additional bits are stored in %rdx (which is one of the reasons 

it is known as the data register). When two registers are combined together this way, 

it is often written out as %rdx:%rax, though you would not write this as code (just as 

documentation/communication).

The div instruction is the opposite. The dividend (the number being divided) is 

stored in %rdx:%rax, and the divisor (the number it is divided by) is specified as an 

operand to the instruction. The result is then stored with the quotient (main result) 
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being stored in %rax and the remainder being stored in %rdx. This is why we said in 

Chapter 4 to be sure that %rdx is zero before issuing a div instruction—it is actually 

included as part of the dividend!

Note that it is possible for the div instruction family to fail in multiple ways. If the 

starting value uses more than 64 bits, it is possible for the result to be more than 64 bits. 

Additionally, dividing by zero is illegal, so the divisor can’t be zero. If either of these 

conditions are met, the instruction is considered illegal and the program will terminate.

Note also that the mul and div instruction families are unsigned instructions. 

The signed versions of these instructions are imul and idiv. For all multiplication 

instructions, the carry flag (CF) and overflow flag (OF) are set if the result overflows into 

the second register.

Additionally, the imul and idiv instruction families can operate with two operands 

as well, similar to how the add family operates. However, since only one register is 

specified for the destination, if the result overflows the destination, it is simply truncated 

to be the size of the destination register (but the flags are still set).

8.6  Looking at Individual Bits
Oftentimes you will want to test individual bits of a value. There are several reasons for this:

• You might want to know if a signed value is negative or not (i.e., if the 

most significant bit is set).

• You might want to know if a value is odd or not (for unsigned values, 

whether the least significant bit is set).

• You might be treating a value as a collection of on/off flags and want 

to know if a particular flag in that value is set.

While there are many bit operations available, we will look at two because of their 

utility: AND and OR. The AND operation compares two bits, and the result is 1 if both 

bits are 1 and 0 otherwise. The OR operation compares two bits, and the result is 1 if 

either bit is 1 (or both bits are 1).

To see this in action, let’s consider the following instructions:

movb $0b01100010, %al

movb $0b11110100, $bl

andb %al, %bl
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What this will do is line up the bits of %al with %bl and, for each bit, perform an AND 

function, and the result will be stored in the corresponding bit of %bl (the destination 

register):

      0   1   1   0   0   0   1   0

AND   1   1   1   1   0   1   0   0

_____________________________________

      0   1   1   0   0   0   0   0

As you can see, only the positions where both %al and %bl contained a 1 did the bit 

get set in the resulting value.

Let’s now look at an or operation between these two values:

     0   1   1   0   0   0   1   0

OR   1   1   1   1   0   1   0   0

____________________________________

     1   1   1   1   0   1   1   0

As you can see, if there was any place where either value was 1, then it was set in the 

final value.

The way that AND and OR are used in programming is often to check and to set 

individual bits. For instance, let’s say we have a byte that represents the status of a 

transaction. Let’s say that the least significant bit represented whether or not the 

transaction was completed (we’ll ignore the meaning of the rest of them). It will be 1 if it 

is completed and 0 if it is not.

If we just wanted to pull out that one, single bit to examine, we could use the AND 

function. We would AND the value with a value that only had the bit set that we were 

interested in. That way, the result would only have the value of that bit in it. For instance, 

let’s say the value of our status byte is 0b01001101. If we AND the value with 0b00000001, 

then the result will be 0b00000001 if the final bit is set, and 0b00000000 if it isn’t.

A value that is used to specify which bits we are interested in is known as a bitmask 

(or just a mask), because it is silencing (zeroing out, masking) all the bits that we aren’t 

interested in.

Interestingly, no matter which bit we are checking, we can always see if it is set using 

the zero flag (ZF) on the %eflags register. This is because if the bit isn’t set, the result will 

always be zero. If the bit is set, then the result will be nonzero. So we can use the jz and 

jnz instructions to test this.
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If we don’t want to store the result of the andb instruction, we can use the testb 

instruction instead. This instruction will perform an AND operation and then discard the 

results, but keep the flags set. So, if I wanted to know if the least significant bit of %bl is 

set, I can do the following:

testb $0b0000001, %bl

jnz bitwasset

To set a flag to 1, you can use an OR operation. Let’s say that we have a transaction 

status of 0b01001100, and we want to set the last bit to 1. To do this, we can do the following:

movb $0b01001100, %al

orb $0b00000001, %al

This will set the least significant bit of %al to 1.

To set a flag to 0, you can use an AND operation with all bits set to 1 except the one 

you want to set to zero. Let’s say that %al has my status, but for some reason, I want to 

mark the transaction as incomplete (set the least significant flag to 0). This can be done 

with the instruction andb $0b11111110, %al. This will keep all flags to their original 

value, except for the least significant bit, which it will set to zero.

Other popular bit operations include

NOT: This operation has a single operand and simply flips the bit(s) 

(0 goes to 1 and 1 goes to 0). This is accomplished with the not 

family of instructions. notb %al will reverse all of the bits of %al.

XOR: This means exclusive or. This is similar to OR except that if 

both values are 1, the result is 0. This is accomplished with the xor 

family of instructions.

8.7  Numbers with Decimals
While it may seem appropriate to mention numbers with decimals here, the fact is that 

this is a whole separate topic and isn’t really in scope for an introductory text. However, 

Appendix F provides an introduction. It is included in the appendix rather than the main 

text because it requires additional knowledge learned throughout the rest of the book 

(namely about the function of stacks). For now, just know that dealing with numbers 

with decimals is entirely different, and takes entirely different considerations, than 

dealing with ordinary integers.
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 Exercises

 1. Write a program that adds two signed numbers. If the addition 

overflows, it should give back 1; otherwise, it should give back 0.

 2. Write a program that uses a combination of masks and rotates to 

count the number of 1s in a register.

 3. Write a program that will add two 320-bit values and store the 

result in memory. Since this is too large to output via the exit 

system call, you will need to use the debugger to verify that this 

works.
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CHAPTER 9

More Instructions 
You Should Know
In this chapter, we will discuss instructions which are not used quite as often, but are still 

important to know in order to be able to write and read assembly language code well.

9.1  More Jump Instructions
The jump instruction we have seen so far (jmp) is pretty straightforward. You simply give 

it an address to jump to (usually as a label) and jmp goes there. However, there is more to 

it than that.

There are basically four types of jump instructions: short, near, far, and indirect.  

A short jump is a jump that is within 127 bytes of the current instruction. This allows the 

assembler to use less space for the instruction itself, encoding it in only 2 bytes. A near 
jump is a jump that is somewhere within the current address space. It is encoded as 

being relative to the instruction pointer, using 32 bits.1 This is the “typical” jump that we 

think of. We don’t have to worry about figuring out the relative address as the assembler 

will do that for us. In fact, we don’t even have to worry about the difference between 

short and near jumps, as the assembler will decide whether to encode the jump as a 

short or near jump automatically.

A far jump isn’t really used anymore. It used to be that memory on x86 processors 

was grouped into “segments,” with each segment having its own set of addresses. 

However, Linux employs what is known as a flat memory model, which basically means 

that every address for a process is in the same segment, and each memory location the 

process has access to has a unique address for that process. Far jumps were used to jump 

1 This constrains jump targets to be within 2GB of the current instruction. That’s not incredibly 
limiting, but important to recognize.
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to memory locations that were in different segments. Since everything you need is in the 

same segment, far jumps are unhelpful.

The indirect jumps are a little more interesting. Indirect jumps allow us to jump to an 

address that we won’t know until runtime. Essentially, we will be storing the address we 

want to jump to in a memory location or a register. The indirect jump will then read that 

memory or register location and then jump to the 64-bit address specified.

Indirect jumps utilize the same jmp instruction, but they have an asterisk (*) before 

their operand to signify that it is indirect. For instance, jmp mytarget transfers control 

directly to the address mytarget, but jmp *mytarget will read the 64-bit address stored in 

mytarget and then jump to whatever location that specifies.

The need for indirect jumps may not be especially clear at this time, but we will 

make a lot of use of them in Chapter 18. For now, we will just show a demonstration of its 

usage:

target_pointer:

    .quad 0

mycode:

    movq $mytarget, target_pointer

    jmp *target_pointer

    # Code to jump over

    # ...

mytarget:

    # We're here!

Note that when we get to the call instruction in Chapter 11, all of this information 

will apply to the call instruction as well, except that there are no short calls.

9.2  Bit Manipulation
One of the advantages of assembly language is that since you are working at such a low 

level of code, accessing individual bits and bytes actually tends to be easier and more 

straightforward than in high-level languages. High-level languages actually try to hide 

the underlying representation from you (for good reason), but then that makes accessing 

that underlying representation harder.
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9.3  Basic Logic Functions
A logic function is something that takes one or two bits individually and performs some 

standard operation on them. For example, the “and” function takes two bits and results 

in 1 if both the input bits are 1 and 0 if one input bit is 0 or both of the input bits are 0. So 

it only returns 1 if the first AND the second input bits are 1.

In assembly language, the instruction andq takes two quadwords and performs the 

“and” function on each bit of both quadwords. Like most instructions, it uses the second 

operand as the location to store the results.

Let’s say that %rax contained the bits 011010001010111000001010101111111110101

0010110101010101000011111 and %rbx contained the bits 0110111010100010000011111

011110011101010010110101010101000011011. The instruction andq %rax, %rbx would 

result in each bit being “and”ed together and the result stored in %rbx. In the following, 

I have lined these values up and shown the result so you can more clearly see what is 

happening:

rax:    0110100010101110000010101011111111101010010110101010101000011111

rbx:    0110111010100010000011111011110011101010010110101010101000011011

---------------------------------------------------------------------

result: 0110100010100010000010101011110011101010010110101010101000011011

As you can see, it takes each pair of bits from %rax and %rbx individually and 

performs the “and” operation.

Other standard logic instructions are

orq: This instruction performs an “or” operation, which results in 

a 1 if either or both operands has a 1.

norq: A “nor” operation is the opposite of an “or” operation. 

Basically, whenever an “or” would return 1, the nor returns 0, and 

vice versa.

xorq: An “exclusive or” operation is like the “or” operation, but 

returns 0 if both inputs are 1.

notq: The “not” operation only takes one operand. It simply 

returns the opposite bit for each bit position. If the bit was a 1, it 

returns 0. If it was a 0, it returns 1.
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All these instructions (except notq) set flags, with the zero flag (ZF) being the most 

important.

There are a lot of uses for these instructions, but some typical uses are listed as follows:

• The andq instruction is used for masking bits. That is, if there is a 

subset of bits we are interested in, we can use the andq instruction to 

set all other bits to zero. For instance, if I wanted to know the low- 

order three bits of register %rcx, I could do it with the instruction andq 

$0b111, %rcx.

• Many operations take an operand which has a set of “bit flags.” That 

is, each individual bit within a single quadword has a meaning. 

You can combine individual flags using the orq instruction. That is, 

each flag that is set in either operand will be set in the destination 

operand.

• The most efficient way to load a register with the value of zero is to 

“exclusive or” it with itself. This is fast because the instruction can be 

encoded with a smaller number of bytes. So, to load zero into %rax 

efficiently, you can do xorq %rax, %rax. However, be aware that this 

does set flags.

Note that sometimes it is useful to actually have the assembler do “or” functions for 

you. Again, thinking about a bit flag operand, if you had symbolic names for each bit, you 

can specify the set of flags you are wanting in a more understandable way.

Let us say that we have the following definition of bits—the lowest-order bit means 

that a person knows how to program (0b1), the next lowest-order bit means that a person 

knows chemistry (0b10), and the next lowest-order bit means that a person knows 

physics (0b100). Let us say that we wanted to load a value into %rax that indicated that 

someone knows physics and programming but not chemistry. If we memorized the flags, 

we could simply do movq $0b101, %rax. However, this requires a lot of memorization, 

and someone reading the code for the first time isn’t likely to understand its meaning. 

Instead, we could have a program like the following:

.equ KNOWS_PROGRAMMING, 0b1

.equ KNOWS_CHEMISTRY, 0b10

.equ KNOWS_PHYSICS, 0b100

movq $(KNOWS_PROGRAMMING | KNOWS_PHYSICS), %rax
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The | symbol tells the assembler to perform an “or” operation while assembling. This 

is possible because KNOWS_PROGRAMMING and KNOWS_PHYSICS are constant values, so it 

can be computed at assembly time.

Note that we can then use andq to mask off individual bits and determine if the value 

has that bit set. If we want to know if %rax has the KNOWS_PHYSICS flag set, we can simply 

“and” against that flag, and the zero flag (ZF) will be set if the person does not know 

physics and unset if they do. Therefore, you could use jnz to do some special code if the 

person knows physics. The following is a snippet that shows how this works:

# %rax has the flags

andq KNOWS_PHYSICS, %rax

jnz do_something_special_because_they_know_physics

 Scanning for Bits
Another set of instructions will take an operand and essentially “search” the operand 

for bits. The first instruction is lzcntq. This instruction takes a source parameter, which 

is the operand to scan, counts the number of “leading zeroes” (the number of high- 

order zeroes before hitting the first 1 bit) in the operand, and stores the result in the 

destination operand.

Let’s say that %rbx contained the value 23 (which, in binary, is 10111 with 59 leading 

zeroes). If we performed the instruction lzcntq %rbx, %rcx, then the value 59 would be 

stored in %rcx.

The instruction bsfq (“bit scan forward”) searches a value for the first nonzero bit 

that it finds (starting with the least significant bit as bit 0). It stored the index of the first 

nonzero bit in the destination operand. If no bits are set, the destination operand is 

undefined, and the zero flag (ZF) is set.

Let’s say that %rdx contained the value 200 (which, in binary, is 11001000). If we 

performed the instruction bsfq %rdx, %rax, then the value 3 in %rax because “bit 3” is 

the first bit set (remember, we start counting at bit zero), and ZF will be zero.

There is another instruction, bsrq (“bit scan reverse”), which searches the opposite 

direction, starting at the most significant bit (bit 63).

Note that if you were searching for the first 0 rather than the first 1, you could use 

notq to flip all the bits of the operand and then use bsfq or bsrq to search.

The x86-64 instruction set has a whole lot more bit fiddling instructions, but these 

should handle a majority of the cases that you will need.
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Always remember that bits are counted from least significant to most significant, 

starting with zero. If we are writing the binary form of a number, bit 0 is the rightmost bit.

9.4  Managing Status Flags
Occasionally, you may need to clear or set flags in the status register. The instruction set 

has several instructions that can clear or set flags. These instructions have no operands.

clc: Clears the carry flag (CF)

setc: Sets the carry flag (CF)

cld: Clears the direction flag (DF)

setd: Sets the direction flag (DF)

lahf: Loads the common flags from %eflags into %ah

sahf: Stores the common flags from %ah into %eflags

We will use the direction flag (DF) in the next section.

The instructions lahf and sahf utilize the following bit pattern for the flags:

 0. carry flag (CF)

 1. always 1

 2. parity flag (PF)

 3. always 0

 4. auxiliary carry flag (AF)

 5. always 0

 6. zero flag (ZF)

 7. sign flag (SF)

Bits 1, 3, and 5 are ignored in the sahf instruction.
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9.5  Memory Block and String Operations
You may have wondered why the registers %rsi and %rdi are so named. %rsi is known 

as the source index register, and %rdi is known as the destination index register. The 

reason for these names is that there are several instructions which specifically target 

these two registers, which generally contain a “source address” for a location in memory 

and a “destination address,” respectively. These instructions generally revolve around 

managing strings or blocks of memory.

 Copying Blocks of Memory
The simplest instruction is movsq. This instruction looks in %rsi for an address, looks up the 

quadword value at the address specified there, and copies that quadword to the address 

specified in %rdi. After the data is moved, something else happens—%rsi and %rdi are then 

incremented to the next memory location (i.e., 8 bytes more since we are using quadwords). 

Alternatively, if the direction flag (DF) is set, then the memory locations are decremented 

instead.

That’s a lot to pack into a single instruction! As you can see, this is ideal for copying 

blocks of memory. A single instruction moves a quadword of data from one block to 

another and increments both the source and destination address to the next quadword.

But that’s not all! The movsq instruction can also be prefix with the rep modifier. 

This modifier will repeat the instruction multiple times, counting down using the %rcx 

register as a counter.

The following code will copy the first three of the five values from source to dest:

.section .data

source:

    .quad 9, 23, 55, 1, 3

dest:

    .quad 0, 0, 0, 0, 0

.section .text

_start:

    movq $source, %rsi

    movq $dest, %rdi
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    movq $3, %rcx

    rep movsq

    # Rest of program

As you can see, a lot is packed into the single instruction rep movsq. When copying 

large blocks of data, this can move data very fast.

 Comparing Blocks of Memory
Sometimes you need to check if two blocks of memory are equivalent. For example, to 

see if two blocks of memory are equivalent, you would need to iterate through each value 

in the block to see if all the values are equal. Just like the movsq instruction moves blocks 

of memory, the cmpsq instruction compares blocks of memory.

By itself, the cmpsq instruction will load values from the addresses listed in %rsi and 

%rdi, compare them (similar to the cmp instruction), set the flags appropriately, and 

advance %rsi and %rdi based on the direction flag (DF). This instruction, too, can be 

prefixed by the rep prefix to use %rcx as a counter. However, this prefix by itself doesn’t 

actually help much. If you think about its operation, it would only wind up setting the 

flags for the last value compared.

Instead, there are other versions of the rep prefix which perform additional 

functions. Here, the repe prefix will also only continue while the comparison is equal. 

That is, it will terminate the repetition as soon as two non-equal values are found. This 

way, you can use repe to find out if any value differs anywhere in the two memory 

blocks.

Interestingly, if you are using multiple quadwords to store really huge values, the 

result of this operation will also tell you which one is greater than or less than the other. 

This feature can also be used to compare two strings (the size of the shorter string would 

be stored in %rcx).

 Scanning Blocks of Memory
Let’s say that you were looking for a specific value in a block of memory. For this, the 

scasq instruction would work perfectly. This instruction uses %rdi and loads the value 

in the address specified by %rdi and compares it to the value in %rax. Then, based on the 

direction flag (DF), %rdi is moved to the next address.
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Again, this can be prefixed with a variant of the rep prefix. Here, the repne prefix is 

helpful. This means to continue scanning as long as the comparison is not equal (i.e., as 

long as we haven’t found the value). When the instruction terminates, you can use %rcx 

or %rdi to tell you where the value occurred.

 Finding the Length of a String
Oftentimes, you will need to find the length of a string. We can use the scasb instruction 

to count the number of bytes in a string. To do this, we will start by loading %rcx with 

an extremely large value. The simplest way to do this is to set %rcx to all ones using the 

following code (think back to Chapter 8 to see why this would set %rcx to all ones):

movq $-1, %rcx

Now, let’s say that we have some string data:

mystring:

    .ascii "This is my string\0"

Now, we want to count the characters. Therefore, in our code we can do the 

following:

movq $mystring, %rdi   # load the address of the string

movb $0, %al           # looking for a null value

repne scasb            # repeat until found

At this point, %rdi will be pointing to one byte beyond the null terminator of the 

string (remember, scasb always finishes by incrementing the address). Therefore, we 

need to subtract the starting address and then subtract one to get the correct value:

subq $mystring, %rdi

decq %rdi

Now, %rdi will contain the length of the string. We can then use this for %rcx for 

copying the string (using movsb) or comparing the string to another string (using cmpsb).
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9.6  The No-Operation Instruction
Pretty much every assembly language has an instruction that does nothing, called the 

nop (“no operation”) instruction. This instruction may seem unimportant, but it winds 

up being useful for a number of reasons, mostly revolving around providing “spacing”  

in code.

One reason for this is that sometimes code needs to be modified by other programs. 

Perhaps an instruction or two need to be inserted at a certain location. Providing several 

nop instructions can provide the space to do this. Then, if the instructions wind up being 

a slightly different length than expected, it doesn’t cause problems, because the nop 

instructions left behind will simply do nothing.

Another reason for nop instructions is for code alignment, which will be discussed 

further in Chapter 13.

9.7  Instruction Families and Instruction Naming
I wanted to make a note about instructions, instruction families, and instruction names. 

In this book, with minor exception, we always append the size of the data being used 

to the instruction. That is, for a mov instruction, when utilizing 64 bits, we use the movq 

instruction. When using 8 bits (1 byte), we use the movb instruction.

However, when utilizing registers as operands, the assembler can usually figure 

out what you mean based on the size of register you are using. Therefore, instead of 

writing movq %rax, %rbx, you can simply write mov %rax, %rbx, and the assembler will 

understand that you are referring to the quadword version of the instruction.

For the purpose of this book, I prefer keeping the suffixes as it is more consistent 

and more explicit than what is happening. Additionally, if you see a suffix (such as q) 

on an instruction, it is usually safe to assume that there are b, w, and l versions of that 

instruction as well.

Additionally, different instructions have different limitations on what can be used as 

operands. Some operations disallow immediate-mode values, some operations disallow 

byte-size operations, all operations disallow using memory locations for both operands, 

etc. Being an introductory book, this book is not focused on providing the precise 

limitations of every instruction. In any case, the assembler should let you know if you do 

something invalid, either as an error or a warning.
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 Exercises

 1. Write a program that returns bit 5 of a number.

 2. Write a full program that calculates the length of a string using 

scasb.

 3. Write a program that looks through an array of values for a specific 

value and then returns the index of that value.

 4. Write a program using bit flags that takes three different values 

and finds the bits they all have in common. Return the number 

that has all those bits in common.
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CHAPTER 10

Making System Calls
So far, we have been learning the basics of assembly language itself—how to move, 

store, add, subtract, compare, branch, etc. Now that we have the basics under our belt, 

it is time to learn how to interface with the rest of the computer through your operating 

system.

Different processes on a computer have different levels of access within the 

CPU. Normal processes (such as the ones we have been writing) are known as user- 

mode tasks, because they are run by individual users to accomplish what they want. 

Other processes are kernel-mode tasks, because they are run by the operating system’s 

kernel to accomplish system-level activities.

The kernel we are interacting with is the Linux kernel. While every program 

running under an x86-64 processor uses the same basic instructions no matter what 

the operating system, the interactions with the operating system may be different on 

different operating systems. Some progress in standardization have been made (such 

as the Windows Subsystem for Linux), but, for the purposes of this book, we will focus 

specifically on Linux.

10.1  The Kernel
So what does the kernel do? The kernel is doing several things for you:

• The kernel abstracts the hardware interface, so changes in hardware 

only require changes to the drivers, not to the application code.

• The kernel provides even higher-level abstractions of the world (on 

top of its abstractions of hardware), such as filesystems and networks, 

that the application code can utilize.

• The kernel provides a mechanism for processes to communicate with 

each other.
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• The kernel provides sharing mechanisms so that processes can all 

use system resources without causing injury to each other.

• The kernel provides permission enforcement, to prevent processes 

from doing things that they shouldn’t be allowed to do (like erasing 

or hijacking the operating system).

• The kernel provides a restricted sandbox that your program plays 

in so that any bugs aren’t likely to cause problems outside of the 

sandbox.

• The restricted sandbox that the kernel provides also makes it easier 

for programs to manage themselves, as they don’t have to worry 

about other processes—they essentially act like they own the whole 

computer while they are running.

The way that your program and the kernel interact is essentially as follows. Your 

program operates as if it is the only thing running on the machine. When your program 

needs something outside of itself (access to a file, the network, more memory, a device, 

etc.), it makes a system call. A system call puts your program on hold and then switches 

control to the operating system kernel. The kernel then looks at what you requested; 

checks to make sure the request is valid, that your program has the access rights to what 

it is asking for, etc.; retrieves or performs the requested task; and then returns control 

back to your process.

10.2  Making a System Call
We already have some practice making the exit system call. However, let’s add some 

more detail to this.

System calls are made using the syscall instruction. This call transfers control to 

the kernel. Now, the kernel needs to know why you are invoking it. It needs to know what 

you want.

System call numbers are values that refer to the request that you are making of the 

kernel. As we have seen, the value 60 (0x3c) refers to the exit system call. When the 

kernel is invoked with the syscall instruction, it reads the system call number from 

%rax.
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The kernel, however, usually needs to know more information than just which 

system call to make. For the exit system call, all it needs to know is the exit status, which 

we place in %rdi. However, many system calls require much more information than just 

a single value. Each piece of information, or parameter, is stored in a separate register. 

The parameters, if needed, of a system call are placed in the following registers:

 1. %rdi

 2. %rsi

 3. %rdx

 4. %r10

 5. %r8

 6. %r9

The reason for this order is a bit esoteric, but, because of some special uses of these 

registers, it basically reduces the number of kernel instructions required to perform the 

system call. If a system call takes less than six parameters, it simply ignores the contents 

of that register.

System calls usually return (exit is an obvious exception to this). Even though the 

kernel code uses basically the same CPU instructions that you do, the kernel takes care 

not to clobber any of your registers you are using. There are, however, three exceptions 

to this. The syscall instruction itself clobbers registers %rcx (this stores where the next 

instruction will be when the kernel returns) and %r11 (the current contents of %eflags 

get copied to %r11). Then, if the system call has a value to give back to the program, it will 

store that value in %rax.

Therefore, if you have anything important in these three registers, you should move 

them somewhere else before making the system call.

10.3  Getting the Unix Time
Unix systems measure time in “seconds since the epoch,” where the “epoch” is midnight, 

January 1, 1970 (a somewhat arbitrarily chosen point in time). The system call number 

is 201 (0xc9). It takes one parameter, a pointer to the 64-bit value to store the time in. On 

success, %rax will have the value of the pointer (the same value you put in %rdi).
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The following is code that will wait approximately 5 seconds. It gets the Unix time 

and then loops, continually asking for the current time until it receives a time at least 5 

seconds after the time it found when the program first started:

wait5.s

.globl _start

.section .data

curtime:

    # The time will be stored here

    .quad 0

.section .text

_start:

    ### Initialize

    # Get the initial time

    movq $0xc9, %rax

    movq $curtime, %rdi

    syscall

    # Store it in %rdx

    movq curtime, %rdx

    # Add 5 seconds

    addq $5, %rdx

timeloop:

    # Check the time

    movq $0xc9, %rax

    movq $curtime, %rdi

    syscall

    # If I haven't reached the time specified in %rdx, do it again

    cmpq %rdx, curtime

    jb timeloop
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timefinish:

    # Exit

    movq $0x3c, %rax

    movq $0, %rdi

    syscall

Note that we didn’t have to load %rdi with $curtime in the loop because it was 

already in there. However, I left it in to be more obvious about what was happening. Also, 

this code doesn’t check the return value of the result; it just assumes it is successful. 

That’s a fairly safe bet with this particular system call. However, in general, it is good to 

check the return value of the system call.

Here, the only real error would be if we sent in an invalid address. This would result 

in %rax being set to an error value, which is usually indicated by a negative number.

10.4  Writing Output
The write system call writes data to a file. On Unix, however, the concept of a “file” is 

pretty wide. Pretty much everything on Unix systems tend to be files. On Linux, even 

your processes are files. If you do ls /proc, in addition to other system information, you 

will see a directory for each process you are running, and each directory will contain files 

that describe your running process.

When a file is opened, the open file is given a number by the operating system that 

you use to refer to that file. This number is known as the file descriptor and is usually 

a smallish value. When a process is started, there are typically three file descriptors 

available to you. File descriptor 0 refers to the “standard input” file, which is usually your 

keyboard input on the command line. File descriptor 1 refers to the “standard output” 

file, which is usually the text screen display on the command line. File descriptor 2 refers 

to the “standard error” file, which is meant for writing error messages, but, for simple 

programs, is also usually just hooked up to the text screen display on the command line. 

Note that the operating system allows rerouting of these file descriptors, so they can 

sometimes refer to other things as well, but these are their standard meanings.

Therefore, reading from file descriptor 0 reads from the keyboard, and writing to file 

descriptor 1 will write to the output. If you need to write an error message, it is best to 

write it to file descriptor 2.

The write system call number is 1 (0x01). The first parameter to the system call 

(stored in %rdi) is the file descriptor, the second parameter (stored in %rsi) is a pointer 
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to the data to write out, and the third parameter (stored in %rdx) is the length of this 

data. If you want the data to display properly, it should be ASCII codes. Note that if it 

is null terminated, you should not send the null value. The kernel uses a count, not a 

termination character, to detect the end of the data.1

The following program writes a string and then exits:

simpleoutput.s

.globl _start

.section .data

mystring:

    .ascii "Hello there!\n"

mystring_end:

.equ mystring_length, mystring_end - mystring

.section .text

_start:

    ### Display the string

    # System call number

    movq $1, %rax

    # File descriptor

    movq $1, %rdi

    # Pointer to the data

    movq $mystring, %rsi

    # Length of the data

    movq $mystring_length, %rdx

    syscall

    ### Exit

    movq $0x3c, %rax

    movq $0, %rdi

    syscall

1 The reason why the kernel uses a byte count instead of a null terminator is that many files are 
binary—full of noncharacter data. The null character is often a valid byte in this sort of output 
and therefore may need to be sent. By just giving a pointer and a byte count, the kernel can write 
any kind of data you need it to.
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A few things to note on this program. First of all, we didn’t end the string with a 

null terminator. This is because the system call uses string length instead of a sentinel 

character to determine the end of the string. Second, notice that the string ends with the 

character \n. This is a newline character. Without this, your next prompt would be on the 

same line as the output.

Also note that the three parameters (file descriptor, string start address, and string 

length) are loaded into %rdi, %rsi, and %rdx, respectively. This is the order specified  

in Section 10.2. All system calls will put their parameters in the order specified by 

Section 10.2. This is known as a calling convention. By “convention,” that means that 

there is nothing physically in the computer which forces this order. However, some order 

must be chosen (because that’s how the operating system knows what to do with those 

parameters). Therefore, by choosing a convention, this allows the program and the 

operating system to communicate.

You will find that, in programming, as in life, there are a lot of things which are done 

by convention—the rules themselves are not as important as having everyone follow the 

same set of rules. Indeed, we could imagine some other ordering for these parameters. 

While there is good reason for picking the ordering that was chosen (it minimizes the 

number of instructions that the kernel itself is executing), the kernel programmers could 

have chosen them differently. Ultimately, programming is about making choices, and 

following the choices of others, sometimes even if they are arbitrary. Everyone following 

the same conventions allows for more freedom in communication and operation.

10.5  Learning More System Calls
If you are curious about the system calls available, there is a good list of them available 

at https://chromium.googlesource.com/chromiumos/docs/+/master/constants/

syscalls.md. However, you can also find a list of them by running man 2 syscalls from 

the command line. You can find additional information for each system call by running 

man 2 NAME, where NAME is the name of the system call. Unfortunately, the information is 

about how to call them from C, not assembly language. However, the information in this 

chapter will help you map the information in the manual pages into assembly language 

code.
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10.6  Going Beyond System Calls
While system calls are important, for the most part, you will not be using system calls 

directly. Instead, you will be using higher-level functions from the system library, which 

we will learn to access in Chapter 12. The goal of this chapter is to simply acquaint you 

with the system call mechanism, how it functions, and how it operates as the interface 

between your program and the operating system.

There are lots of reasons why calling system calls directly is usually not the right 

thing to do in a real program. For instance, when reading and writing to files (or standard 

output), the system library will handle a lot of strange or exceptional conditions for you, 

which you would have to do yourself if you wanted to make a robust program. If you exit 

the program using the system library (rather than the system call), it gives other libraries 

that you are using the chance to clean up after themselves before exiting. With the 

system call, you are telling the operating system to shut the program off right now.

That being said, having some familiarity with the system call mechanism is 

worthwhile, and, for very short programs with no outside dependencies (such as the 

ones we have written so far), there’s nothing wrong with using system calls to do direct 

system interaction. If nothing else, you now know how the system library interacts with 

the operating system.

 Exercises

 1. Write a program that prints out two different strings one right after 

the other.

 2. Write a program that prints out the same string ten times in a loop.

 3. Write a program that takes a number stored in memory and 

determines if that number is odd or even. Rather than using the 

exit status to communicate this information, have the program 

choose between two different strings to write to standard output.

 4. Write a program that loops ten times and alternates between 

printing two different strings each time.
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CHAPTER 11

The Stack and  
Function Calls
The stack is an area of memory that is used to store values which will eventually be 

discarded.

11.1  Imagining the Stack
To understand what the stack is or why it is needed, imagine yourself doing a 

complicated task that involves a lot of paperwork. Imagine yourself doing taxes, and 

imagine doing it largely on paper, not the computer.

Now, while doing your taxes, you discover that you need to find out how much 

money you spent on tools for your job. This is a new (though related) task. You have to 

set down your old task in order to do it. You need the total to write down on your tax 

form, but you don’t need the form itself to find out how much you spent.

So then you look through your bank statement to see what you spent money on. 

As you are going through your bank statement, you notice an anomalous charge. Now, 

you put down the bank statement and pick up the phone to call your banker about the 

charge. The banker needs your driver’s license number, so you put the phone down to go 

find your license.

When you find the license, you write down the number, put the license away, and 

pick up the phone with your banker again. When you are done on the phone, you 

hang it up and set it aside, and you pick up where you left off reading through the bank 

statement. When you are done totalling the amount you spent on your tools, you set 

down the bank statement and pick up the tax forms again. You write the result into your 

tax form and continue on doing your taxes.
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Now, if you’re like me, when you set down one task to do another, you probably just 

scattered the papers around. Computers, however, don’t work like that. They need strict 

organization.

A more computer-oriented way to tackle this problem is to recognize that each 

“thing” you are doing (tax forms, looking through a bank statement, calling your banker, 

looking for your license) will have your attention. Additionally, when you are done, you 

are going to “go back” to what you were doing before. You might use the result of your 

inner task when you go back to the larger task, but on the whole, you can discard all of 

your intermediate results.

The way that we could organize such a system is by using a stack of papers. You 

might have all of your current papers laid out on your desk, but when you need to move 

into a task (such as looking through your bank statement), you take all of the papers that 

you are working on and put them onto the stack. Then you pull out your bank statement. 

When you call your broker, you put the bank statement on the stack and pull out your 

phone. When your broker needs your license number, you can put the phone on the 

stack while you go and do that.

As you complete each task, you can resume the previous task just by picking up 

whatever you last left on the top of the stack, because that is the last thing you were 

doing. You set the phone on the stack to go find your license, so when you are done, the 

phone is on the top of the stack. When you are done on the phone, the next thing on the 

top of the stack is your bank statement. When you are done reading the bank statement, 

the next thing on the top of the stack is your tax form.

So, having a stack gives you the ability to set down what you are currently doing, 

go do something else for which you need the results, and then come back and pick up 

where you left off.

11.2  The Computer Stack
This is what the stack on the computer does as well. The stack is an area of memory that 

is reserved for stacking temporary items. The operating system preallocates space for 

the stack and then puts the pointer to this memory in the stack pointer, %rsp. While 

pointers generally refer to the beginning of a memory region, at the beginning of a 

program %rsp points to the end of the memory region containing the stack.

Chapter 11  the StaCk and FunCtion CallS 



135

You can then add things to your stack using the push family of instructions. When 

you push something onto the stack, it does two things:

 1. It decrements %rsp to point to the next location on the stack.

 2. It copies the value to the location specified by %rsp.

You can then get the values back using the pop family of instructions, which does the 

reverse.

As a simple example of using the stack, we will implement the factorial function. The 

factorial function takes a number and then multiplies it by all of the numbers between 

it and one. So, the factorial of 5 is 5 × 4 × 3 × 2 × 1, and the factorial of 3 is 3 × 2 × 1. What 

our program will do is to start at a given value and push each value we want to multiply 

by on the stack. Then, we will pop from the stack and multiply until we get the final 

answer. This is not the most elegant way to write a factorial function, but it will hopefully 

demonstrate in a simple way how the stack works. Also note that we will start by pushing 

a zero onto the stack as a sentinel value so we know where to stop.

factorialstack.s

.globl _start

.section .data

value:

.quad 5

.section .text

_start:

    # Push in the sentinel value

    pushq $0

    # Grab the value

    movq value, %rax

    # Push all the values from 1 to the current value to the stack

pushvalues:

    pushq %rax

    decq %rax

    jnz pushvalues

    # Prepare for multiplying

    movq $1, %rax
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multiply:

    # Get the next value from the stack

    popq %rcx

    # If it is the sentinel, we are done

    cmpq $0, %rcx

    je complete

    # multiply by what we have accumulated so far

    mulq %rcx

    # Do it again

    jmp multiply

complete:

    movq %rax, %rdi

    movq $60, %rax

    syscall

11.3  The Importance of the Stack
The beauty of using the stack is that you can use it to separate out distinct parts of your 

program. Rather than having to memorize which variables are in use at which time, 

and making sure you don’t actually clobber something (like a register), you can store 

register values (and other values) on the stack before jumping out to another part of the 

program. Then, when control comes back to where it was, the program can simply read 

its currently active values back from the stack.

This requires that any part of the program that uses the stack also cleans up after 

itself, being sure to pop all values that it pushed or take other equivalent measures to get 

the stack back to how it was before control was passed to this part of the program.

This is obviously not important in our simplistic programs so far, but as the 

complexity of your programs increase, the less you want to have to know about other 

parts of your program to modify the current part of your program. This is known as loose 
coupling—it means that we are going to try to make it so that when we work on one part 

of the program, we don’t have to remember all of the details about how another part is 

implemented. This makes it simpler to make modifications (because you don’t have to 

remember the registers being used elsewhere) and also makes it easier for people who 
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aren’t completely familiar with the code to make changes. Otherwise, they would have 

to have total knowledge of the complete program in order to know that they weren’t 

causing problems in some way.

11.4  Reserving Space on the Stack
In addition to pushing and popping values on the stack, you can also manipulate the 

stack directly. Let’s say that you want to reserve a space of 16 bytes on the stack. All 

you have to do in order to do that is simply subtract 16 from the stack pointer using 

subq $16, %rsp. You just have to remember to add it back when you are done with it 

with addq $16, %rsp. Remember, since the stack is, well, a stack, when cleaning up, 

everything has to be done in exactly the reverse order that it occurred when creating it.

So far, when we have wanted to use data in memory, we allocated specific storage 

in the .data section of the program. However, oftentimes you will want to just allocate a 

temporary amount of space that is just being used for the duration of a section of code. 

For this, reserving stack space works really well.

Another thing to keep in mind is that stack space, while big, is limited. On x86-64 

systems, stack space by default is limited to 2 megabytes.

11.5  Functions
We’ve talked a bit about loose coupling. In computer programming, the first step to 

making your program loosely coupled is to divide the program into functions, also 

called procedures or routines.

Functions are the basic building block of larger computer programs. So far, our 

programs have been small enough that there was no reason to break them up into 

pieces. However, as program complexity grows, and as you need to pull in bits of code 

from other places, functions become more and more important.

Functions are defined as having

Name: Obviously everything has a name. In a function, the name 

is also used as a label to the starting address of the function’s code 

(the function entry point).
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Input parameters: Functions have inputs, which are the things 

that the function uses to process. For example, a factorial 

function would take as an input parameter the value that you 

want the factorial to be taken of. Input parameters are also called 

arguments.

Return value: Functions have a return value, which is the 

value that is given back to the code that called the function. For 

example, on the factorial function, the return value is the final 

result of doing the factorial. In many languages, there is only one 

value that is allowed as the return value of the function. However, 

a function can simulate having multiple return values by passing 

in pointers as input parameters to memory where other results 

will be stored for output. Another option is for the return value to 

be a pointer to an area of memory containing multiple values.

Side effects: A side effect is something that is altered which 

is not specified in the input or output parameters. In general, 

programmers attempt to avoid side effects, but this is not always 

possible. For example, logging an error is a side effect—usually the 

log is not a parameter to a function, so sending data to the log file 

is a side effect.

The question, then, is how do we define functions so that they are loosely coupled, 

follow an understandable convention, and allow for these types of interactions?

11.6  Function Calling Conventions
Just as there is a convention for system calls, there is a predefined convention for 

function calls. This type of convention is known as an application binary interface, or 

ABI. The ABI that Linux uses is known as the “System V ABI,” and here, we will describe 

the major features of the x86-64 version of the System V ABI.

Having this interface means that not only do we not need to define these conventions 

on every program, it also means that I can call functions written by other people, even in 

other programming languages, as long as they follow the conventions.

Chapter 11  the StaCk and FunCtion CallS 



139

 Preservation of Registers
The calling conventions require that the function being called should preserve the 

contents of the registers %rbp, %rbx, and %r12 through %r15. This means that if you 

want to use these registers, you have to save what is already there first to memory or the 

stack and restore them before you return. The remaining registers can be overwritten 

as needed. This also means that if you are calling a function, you should know that any 

register other than these may be overwritten during the function call.

 Passing Input Parameters
Parameters come to the function primarily in registers. Parameters are identified by 

position, and the positions correspond to the registers as follows:

 1. %rdi

 2. %rsi

 3. %rdx

 4. %rcx

 5. %r8

 6. %r9

So, if there is only one parameter, it gets passed in %rdi. If there are two, the first 

parameter is passed into %rdi and the second is passed into %rsi.

If there are more than six parameters, all additional parameters get pushed onto the 

stack as quadwords (using pushq). The last parameter gets pushed onto the stack first.

So let’s say you had a function called myfunc that should be given ten parameters and 

you wanted to pass the value 1 as parameter 1, the value 2 as parameter 2, and so forth; 

you would call the function like this:

movq $1, %rdi

movq $2, %rsi

movq $3, %rdx

movq $4, %rcx

movq $5, %r8

movq $6, %r9

pushq $10
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pushq $9

pushq $8

pushq $7

call myfunc

Having such long parameter lists is pretty rare, but they do happen from time to time. 

The goal of the calling convention is to maximize the usage of registers to speed up the 

program.

 Returning Output Parameters
Return values get returned in %rax. The ABI specification allows for using %rdx as well 

if there is a second return value, though I am not aware of where this has been used. 

Usually, if more return values are needed, either %rax will contain a pointer to a set of 

values, or the input parameters will include pointers to locations where those additional 

return values should be stored.

 Saving Data on the Stack
This is a little more complex than the rest. As mentioned, temporary local values get 

saved in the stack. The section of the stack that belongs to a given function invocation 

is known as a stack frame. The stack frame consists of all of the local temporary storage 

needed for your function, as well as additional metadata that the system needs to make 

the function invocation. A visualization of the stack frame can be seen in Figure 11-1.

Figure 11-1. Organization of a Stack Frame
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In this drawing, each box represents a quadword of data. The boxes are drawn so 

that the lower memory addresses are drawn toward the bottom. Note that since the stack 

grows “downward” in memory, when we talk about the “top” (conceptually) of the stack, 

it is actually lower in memory.

The actual value of the stack pointer is going to be changing as pushes and pops are 

made in your code. If you have local storage in the stack, it’s tough to keep track of where 

that is relative to the stack pointer. Therefore, rather than actually refer to local values 

using the stack pointer, the ABI uses %rbp to store the value of the current stack frame. 

Therefore, all local values will be referenced as offsets to %rbp (which will be fixed for the 

duration of the function), and %rsp will be modified as needed during pushes, pops, and 

function calls.

When starting a function, you should first save the value of %rbp. This register is 

required to be preserved, as mentioned in a previous section. Therefore, the first thing 

that should be done is to push this value onto the stack. Immediately after pushing the 

value of %rbp onto the stack, %rsp should be copied to %rbp. This makes %rbp point to the 

previous version of itself.

Now, we need to make room for local variables. Subtract from %rsp (remember, the 

stack grows downward!) however much memory you need for local variables. You will 

refer to them as offsets from %rbp, but subtracting the value from %rsp is what reserves 

the space so that any function calls that the present function makes won’t cause its local 

variables to be overwritten.

Nearly every function starts with these instructions to manipulate the stack, where 

NUMBYTES is the number of bytes of local storage space required:

# Save the pointer to the previous stack frame

pushq %rbp

# Copy the stack pointer to the base pointer for a fixed reference point

movq %rsp, %rbp

# Reserve however much memory on the stack I need

subq $NUMBYTES, %rsp

Then, at the end of the function, these steps should be reversed:

# Restore the stack pointer

movq %rbp, %rsp

# Restore the base pointer

popq %rbp

Chapter 11  the StaCk and FunCtion CallS 



142

Now, creating a stack frame when entering a function and removing a stack frame 

when leaving a function are so common that instructions were added to do all these 

steps together: enter and leave.

The enter instruction simply takes a value that is the amount of additional memory 

you want on the stack and does all three steps for you. Therefore, the code for creating a 

stack frame in a function can be replaced with the following code:

enter $NUMBYTES, $0

Don’t worry about the second operand in that instruction—just leave it at zero. 

That is used for a programming language feature called “closures” (also called “nested 

functions”) which we don’t worry about too much when writing assembly language 

directly. In truth, even for programming languages that use closures, they rarely are 

implemented using this feature of enter.

Likewise, the code for tearing down a stack frame can be replaced simply with the 

following:

leave

However, it is good to know the equivalent instructions so that you know what it is 

doing under the hood.

Note that some functions are sufficiently simple that they don’t need to use enter 

and leave. If all of your computation can be done in registers, and you aren’t overwriting 

any of the registers you are required to preserve, then there is no reason to use these 

instructions to create a stack frame.

I should note that the enter instruction is actually much slower than the equivalent 

set of instructions given before. However, we will continue to use the enter instruction 

for setting up a stack frame because (a) it is clearer, (b) it takes less space in the text, 

and (c) it allows you to visually see matching enter/leave instructions for setting up 

and tearing down stack frames, so you can more easily verify that you do either both 

or neither. The leave instruction is faster than the instructions it is replacing. Because 

of this, you will find a lot of compilers will set up a stack frame manually, but then use 

leave to tear it down.
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 Invoking and Returning with call and ret
Now, the big question is, how does the function you are calling know how to get back to 

you? If we issued a jmp instruction, the processor could start running the code, but then, 

when it was done, it would have no idea where to come back to.

The way this is solved is by pushing the address of the next instruction that you want 

to be executed when the function is completed onto the stack before jumping. This is 

known as the return address. This can be coded as follows:

    pushq $next_instruction_address

    jmp thefunction

next_instruction_address:

    # Next instruction here

However, this is so common that there is an instruction that does just this, the call 

instruction. Using call also gets rid of the need to put a label on the next instruction, 

because it just uses the next instruction that it would execute as the return address. 

Therefore, the preceding code can be replaced by

call thefunction

Likewise, popping the return address off of the stack and then jumping to it is 

accomplished with the ret instruction. This is done at the very end of a function with the 

following simple code:

ret

 Aligning the Stack
According to the System V ABI, the stack is supposed to be aligned to a multiple of 

16 bytes immediately before every function call. “Aligned to 16 bytes” means that 

the address of the stack pointer (%rsp) should be a multiple of 16. This is not always 

necessary, but some function calls will crash if this alignment is not properly heeded.

Since all function calls will involve storing the return address and the prior base 

pointer (for a total of 16 bytes), this means that when we request space using the enter 

function, we should always request a multiple of 16 bytes. This isn’t strictly necessary if 

your function doesn’t call other functions, but we will do it regardless so that we don’t 

forget if we add in a function call later.
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So, if you are going to allocate 8 bytes using enter $8, $0, to align it to 16 bytes, 

use enter $16, $0. Also, if you are calling a function that uses extra parameters 

that are passed on the stack, be sure to push extra bytes, words, or quadwords onto 

the stack before pushing the parameters to be sure that the final result is 16 byte 

aligned. Thankfully, most functions don’t take that many parameters, so it is rarely a 

consideration.

 More Complex Cases
There are more complicated cases than the ones we are considering here. The complete 

documentation for the x86-64 System V ABI is available online at https://gitlab.com/

x86- psABIs/x86- 64- ABI. If you want to send data that isn’t an integer or a pointer or has 

more than six input parameters, you should probably check the ABI to see how it should 

be sent.

11.7  Writing a Simple Function
So, that’s a lot to throw out at you. Let’s put it together into a simple function. This 

function will take the first argument and raise it to the power of the second argument. 

We built a similar program in Chapter 5, but this time, we will write it as a function. Here 

is the code:

exponentfunc.s

.globl exponent

.type exponent, @function

.section .text

exponent:

    # %rdi has the base

    # %rsi has the exponent

    # Create the stack frame with one 8-byte local variable

    # which will be referred to using -8(%rbp).

    # This will store the current value of the exponent

    # as we iterate through it.

    # We are allocating 16 bytes so that we maintain
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    # 16-byte alignment.

    enter $16, $0

    # Accumulated value in %rax

    movq $1, %rax

    # Store the exponent

    movq %rsi, -8(%rbp)

mainloop:

    mulq %rdi

    decq -8(%rbp)

    jnz mainloop

complete:

    # Result is already in %rax

    leave

    ret

Notice that we declared the name of the function to be .globl, but didn’t worry 

about the other labels. Basically, the only labels that need to be available to other code 

are the function entry points.

We can then write a short program to call this function:

runexponent.s

.globl _start

.section .text

_start:

    # Call exponent with 3 and 2

    movq $3, %rdi

    movq $2, %rsi

    call exponent

    # result is now in %rax

    movq %rax, %rdi

    movq $60, %rax

    syscall

Chapter 11  the StaCk and FunCtion CallS 



146

We can then build the program as follows:

as exponentfunc.s -o exponentfunc.o

as runexponent.s -o runexponent.o

ld exponentfunc.o runexponent.o -o runexponent

We can then run the program as usual.

11.8  Calling the Function from Another Language
Since we are following the ABI, this means that we can now call our function from 

another programming language, such as C.

The following is a section of C code that will call our function:

runexponent.c

int exponent(int, int);

int main() {

    return exponent(4, 2);

}

You can compile this together with the assembly language function using the 

following command:

gcc runexponent.c exponentfunc.s -o runexponent

This will compile together the C source code and the assembly language function 

into the program runexponent.

11.9  Writing Factorial as a Function
While there are a number of ways to write the factorial function, conceptually we think of 

the factorial function as being defined as

 factorial factorialn n n� � � � �� �1  

with a special case of factorial(1) being 1.
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In other words, we can define the factorial function in terms of the factorial function 

itself. This is a recursive function because it calls itself. It works because there is a base 
case where the value is actually directly computed.

Now that we have learned functions, we can actually structure our code like this 

as well. It may seem strange to have a function call itself, but stack frames allow the 

program to make sense of this concept. Every time the function calls itself, it will 

generate a new stack frame. Because on each invocation the function is always working 

with a different stack frame, the variables don’t get confused.

The function is written as follows:

factorialfunc.s

.globl factorial

.section .text

factorial:

    #  We will reserve space for 1 variable - the value we were called with

    # (aligned to 16 bytes)

    enter $16, $0

    # If the argument is 1, then return the result as 1.

    # Otherwise, continue on.

    cmpq $1, %rdi

    jne continue

    # Return 1

    movq $1, %rax

    leave

    ret

continue:

    # Save the argument into our stack storage

    movq %rdi, -8(%rbp)

    # Call factorial with %rdi decreased by one

    decq %rdi

    call factorial
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    # The result will be in %rax.  Multiply the result by our

    # first argument we stored on the stack

    mulq -8(%rbp)

    # Result is in %rax, which is what is needed for the return value

    leave

    ret

We can then create a program to call this function:

runfactorial.s

.globl _start

.section .text

_start:

    # Call factorial with 4

    movq $4, %rdi

    call factorial

    # result is now in %rax

    movq %rax, %rdi

    movq $60, %rax

    syscall

You can then build these two together as follows:

as factorialfunc.s -o factorialfunc.o

as runfactorial.s -o runfactorial.o

ld factorialfunc.o runfactorial.o -o runfactorial

As you can see, functions allow you to structure your program in a way that is 

flexible and more understandable. Functions can be used to decompose a program into 

functionally related pieces where the interfaces between the functions are well specified. 

The ABI is a standardized convention which specifies the details on how these functions 

are handled which allows functions even in different languages to call each other.
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11.10  Using .equ to Define Stack Frame Offsets
When there are just one or two variables, keeping track of their stack offsets is not too 

hard. However, as the number of local variables expands, it’s harder and harder to 

remember which stack offset is used for which value. We can use .equ to give our stack 

offsets more clear names.

The following is the factorial function, with the only difference being that we defined 

a symbol, LOCAL_NUM, to refer to the stack offset that we are storing the number. We could 

have called this anything, but we prefixed the name with LOCAL_ just so we remember 

that this refers to a local variable offset. We also didn’t define it as global because it only 

makes sense within the present function.

factorialfuncsym.s

.globl factorial

.section .text

# This is the offset into the stack frame (%rbp) that we store the

# number for which we are taking the factorial.

.equ LOCAL_NUM, -8

factorial:

    # We will reserve space for 1 variable - the value we were called with

    # (aligned to 16 bytes)

    enter $16, $0

    # If the argument is 1, then return the result as 1.

    # Otherwise, continue on.

    cmpq $1, %rdi

    jne continue

    # Return 1

    movq $1, %rax

    leave

    ret

continue:

    # Save the argument into our stack storage

    movq %rdi, LOCAL_NUM(%rbp)

Chapter 11  the StaCk and FunCtion CallS 



150

    # Call factorial with %rdi decreased by one

    decq %rdi

    call factorial

    # The result will be in %rax.  Multiply the result by our

    # first argument we stored on the stack

    mulq LOCAL_NUM(%rbp)

    # Result is in %rax, which is what is needed for the return value

    leave

    ret

 Exercises

 1. Look at the runexponent.c program. See if you can build a similar 

program to call your factorial function with.

 2. Pick two programs from previous chapters and convert them to 

functions.

 3. Create a function that, if given an even number, calls the 

factorial function with that value and, if given an odd number, 

raises that number to the third power using the exponent 

function. Then write a program that calls this function.
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CHAPTER 12

Calling Functions 
from Libraries
In Chapter 11, we learned how to structure our code into functions so that other code 

can call these functions in a standardized way. However, your computer already comes 

preloaded with thousands of functions already built which you can call. In this chapter, 

we will look at how to call those functions, as well as some of the more helpful ones that 

are available.

The actual process of calling these functions you already know. If you know the 

name of a function, and you know its parameters, then you know the assembly language 

instructions to call it—move the parameters to the correct registers, save any registers 

that are not guaranteed to be preserved to the stack, and then call the function.

The questions, then, are, (a) how do we know what functions are available, (b) how 

do we learn what the parameters are, and (c) how do we include these functions in our 

program?

12.1  Linking with Static Libraries
There are two general types of libraries available on Linux—static libraries and shared 
libraries. Static libraries contain code that get directly added to your program. Whatever 

functions from the library that you use, those get physically copied into your final 

program. This chapter will deal with static libraries. We will consider shared libraries in 

Chapter 15.

Static libraries on Linux typically end with a .a extension, which stands for “archive.” 

These are archives of functions that you can use yourself.
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12.2  Linking with Libraries
In this section, we are going to do a very short program to show how to use the standard 

library. The function we are going to use is the abs function, which takes one input 

parameter (a positive or negative integer) and yields the absolute value (the positive 

value) of that parameter. So, the absolute value of -5 is 5. It’s a simple function, because 

the main thing is to just show how to call such functions and pull in the library.

What we are going to do is to load a negative number into %rdi and then call abs to 

convert it to a positive number. The code for the program is as follows:

abscall.s

.globl _start

.section .text

_start:

    # First parameter is -5

    movq $-5, %rdi

    # Call the function

    call abs

    # Result is in %rax, move to %rdi for the exit syscall

    movq %rax, %rdi

    movq $60, %rax

    syscall

Note that there is nothing special here. We are simply assuming the existence of the 

function called abs. We can assemble it just as we typically do with as abscall.s -o  

abscall.o. The assembler will assume that this is defined later. However, if we tried 

to link it just as we have done before, we will get an error saying, “undefined reference 

to ‘abs’.” That is, the linker will notice that it can’t find the symbol abs, so it has no idea 

where that call instruction should go.

This function is defined in the standard C library. Library files for static libraries are 

named libX.a, where X is considered the name of the library. For the standard C library, 

the file is just called libc.a. To tell the linker to link your file and include functions from 

the library, you would issue the following command:

ld abscall.o -static -lc -o abscall
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The -static tells the linker that you want to physically incorporate the library 

functions into your program. The -lc tells the linker to link with the c library. It takes 

the c and expands it to libc.a, since we are looking for a static library (it would look for 

libc.so if we were linking to a shared library). Most libraries are named with more than 

one letter, but the standard C library is just c.

After this, the program abscall is ready to go just like any other program we have 

written.

12.3  Using the Standard C Library Entry point
Occasionally, some C functions require that certain setup functions have been run. 

Because of this, when linking with other libraries, it is common to not define _start in 

your program, but to instead define main. _start gets linked in from a separate library, 

which performs all necessary C library initialization.

The only change to your code is that the entry point is main, not _start. Here is the 

same absolute value function written to utilize the standard C library entry point:

absmain.s

.globl main

.section .text

main:

    # This is a function, but there are no local variables,

    # so we don't need to create a stack frame.

    # First parameter is -5

    movq $-5, %rdi

    # Call the function

    call abs

    # The result is already in %rax, so we just need to return

    # Since main is called from the standard C library,

    # we just need to return rather than call the exit system call.

    ret
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This has two basic changes, both related to the fact that now main is being called 

from the C runtime library as a function.1 First, we changed all mentions of _start to 

main. Second, we didn’t have to call the exit system call. The C runtime library does that 

for us using the return value from main. Also, in this case, we didn’t need to use enter 

and leave to create and tear down a stack frame, but we could have done so if we needed 

local variable storage.

Now, since we are using the C runtime library to supply the _start entry point for 

us, we have to link to additional code to provide that. However, the process to do this is 

sufficiently complex (and distribution specific) that we actually need the C compiler to 

assist us. GCC is the GNU Compiler Collection, which includes not only the C compiler 

but compilers for all sorts of languages, as well as tools to help you link and run them. 

GCC is also aware of assembly language and can be used to assemble and link assembly 

language files as well.

GCC can take care of assembling and linking all the needed components using the 

following single command:

gcc absmain.s -static -o absmain

When using gcc, it automatically links in the c library, but you can add additional 

libraries to link with using the same -l syntax and the name of the additional library you 

want to link in. The -static flag is similar to the one that we used to link with, specifying 

that we want to physically incorporate code from static libraries. Note that doing this 

adds about 500 kilobytes to the final code size. Even so, it is best practice to build your 

programs in this way when using the C library because you don’t know which functions 

require the initialization code that this method brings in.

12.4  Working with Files
The C library has lots of functions that make working with input/output much easier. 

You may have noticed, for instance, that so far we have not done any code which actually 

prints out a number. That’s because converting a number into its string representation 

using ASCII digits is somewhat of an annoyingly hard problem. It’s not terribly hard (you 

should try it yourself sometimes); it’s just tedious.

1 The “C runtime library” is a different beast than the “standard C library” though they function 
together as a unit. As we will see in the following, we can use the compiler to handle bundling all 
of these components together, as the details get tricky.
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However, the C library gives us all sorts of functions which allow us to read and write 

all sorts of data, both from the standard input and output and from files. The C library 

handles a lot of the complexity of Linux system calls for us, and we only need to concern 

ourselves with the actual reading and writing of data.

Now, the C library needs some additional data to handle this complexity, so it 

maintains a data structure (called the FILE) which maintains this data. The nice thing 

is that you don’t have to know anything about this data. Opening a file will return an 

opaque pointer to you which represents the file, and then you pass that back to other 

functions you need to work with the file. An opaque pointer simply means that you don’t 

have to worry about the specific data that the pointer points to. You just have to keep 

track of it and use it to refer to the file you are dealing with. The specific data that the 

pointer points to is managed entirely by the C library.

The functions we are interested in right now are the functions to open, write, and 

close files.

The function which opens a file is called fopen. This function takes two parameters. 

The first one is the pointer to a string which contains the filename, which will be relative 

to whatever the current working directory is. The second one is the pointer to a string 

which contains the “mode” that the file should be open in. Some of the options for the 

mode are "r" for reading, "w" for writing, "a" for appending (like writing, but starts at 

the end of the file if it already exists), and "r+" for both reading and writing. Both of 

these strings are null terminated.

The open results in the opaque FILE pointer we talked about earlier. You simply store 

that pointer and send it back in for other C library calls. If the open fails for any reason 

(you don’t have permission and so on), then the call returns the literal value zero in %rax 

instead of the pointer. When a program has a zero in place of a pointer, that is called a 

null pointer because it is supposed to be a pointer to something, but instead points to 

nothing. Many functions return null pointers instead of real pointers when failures occur.

To write to the file, you use the fprintf function. The first parameter to fprintf is 

the FILE pointer. The second parameter is the “format string” which tells the function 

the outline of what to print. However, the format string can contain variables which get 

substituted and printed into the string. These variables are then passed, in order, after 

the format string. So, let’s say that you wanted to write the age of a person to a file, which 

says, “The age of Sally is 53.” You can do that using a format string that says, "The age 

of %s is %d.". What the %s does in the string is tell the fprintf function that the next 

parameter will be a pointer to a null-terminated string, and it should substitute that 

Chapter 12  Calling FunCtions From libraries



156

string in for %s. What the %d does in the string is tell the fprintf function that the next 

parameter will be an integer, and it will display that integer as a decimal, replacing the %d.

One important note is that, on functions that take a varying number of arguments 

(called variadic functions), you should set %rax to zero if you are not passing any 

floating-point values (see Appendix F for more information on this). Since fprintf can 

take a variable number of arguments (based on the number of substitutions specified in 

the format string), and we haven’t even learned how to do floating-point values yet, %rax 

should be set to zero before calling this function.

When you are done with the file, you call the fclose function to close the file. Closing 

files is important because it makes sure that all of the data that was pending to be written 

in the file is fully written out to disk. If you forget to close the file, it is possible that some 

of the data won’t be written before your program finishes, and the data will be lost. 

When you call fclose, you simply send in the FILE pointer you received before. fclose 

will return a zero if everything was successful and a nonzero value if it encountered any 

problems while closing the file.

The following code will open a file called myout.txt, write two formatted strings to 

the file, and then close the file:

filewrite.s

.globl main

.section .data

filename:

    .ascii "myfile.txt\0"

openmode:

    .ascii "w\0"

formatstring1:

    .ascii "The age of %s is %d.\n\0"

sallyname:

    .ascii "Sally\0"

sallyage:

    .quad 53

formatstring2:

    .ascii "%d and %d are %s's favorite numbers.\n\0"

joshname:
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    .ascii "Josh\0"

joshfavoritefirst:

    .quad 7

joshfavoritesecond:

    .quad 13

.section .text

main:

    # Create a stack frame with one local variable

    # for the file pointer (aligned to 16 bytes)

    enter $16, $0

    # Open the file for writing

    movq $filename, %rdi

    movq $openmode, %rsi

    call fopen

    # Save the file pointer in the local variable

    movq %rax, -8(%rbp)

    # Write the first string

    movq -8(%rbp), %rdi

    movq $formatstring1, %rsi

    movq $sallyname, %rdx

    movq sallyage, %rcx

    movq $0, %rax

    call fprintf

    # Write the second string

    movq -8(%rbp), %rdi

    movq $formatstring2, %rsi

    movq joshfavoritefirst, %rdx

    movq joshfavoritesecond, %rcx

    movq $joshname, %r8

    movq $0, %rax

    call fprintf

    # Close the file
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    movq -8(%rbp), %rdi

    call fclose

    # Return

    movq $0, %rax

    leave

    ret

Since we are using the standard C library, we are going to build this using the 

following command:

gcc filewrite.s -static -o filewrite

You can then run it by doing ./filewrite. After running it, there should be a new file 

in your current directory called myout.txt which contains the output.

12.5  Using stdout and stdin
As mentioned in Chapter 10, the operating system has three open file descriptors for you 

at the beginning of your application—standard input, standard output, and standard 

error. In the C library, the library automatically creates FILE pointers for each of these for 

you, called stdin, stdout, and stderr.

These do not need to be opened or closed—that is done for you. You can use them 

just like you would any other file when calling file-related functions such as fprintf.

The following is the same program we just did, but with the output directed to 

stdout:

stdoutwrite.s

.globl main

.section .data

formatstring1:

    .ascii "The age of %s is %d.\n\0"

sallyname:

    .ascii "Sally\0"

sallyage:

    .quad 53
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formatstring2:

    .ascii "%d and %d are %s's favorite numbers.\n\0"

joshname:

    .ascii "Josh\0"

joshfavoritefirst:

    .quad 7

joshfavoritesecond:

    .quad 13

.section .text

main:

    # No local variables - no stack frame needed

    # Write the first string

    movq stdout, %rdi

    movq $formatstring1, %rsi

    movq $sallyname, %rdx

    movq sallyage, %rcx

    movq $0, %rax

    call fprintf

    # Write the second string

    movq stdout, %rdi

    movq $formatstring2, %rsi

    movq joshfavoritefirst, %rdx

    movq joshfavoritesecond, %rcx

    movq $joshname, %r8

    movq $0, %rax

    call fprintf

    # Return

    movq $0, %rax

    ret

Note that, perhaps surprisingly, the load instruction is movq stdout, %rdi instead 

of movq $stdout, %rdi. The reason is that stdout is actually a pointer to the memory 

location where the FILE pointer lives, not the file pointer itself.
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12.6  Reading Data from a File
Data can be read from a file using fscanf. fscanf takes very similar parameters as 

fprintf—a file handle, a format string, and a sequence of variables based on the 

variables in the format string. The difference, however, is that since you are reading the 

values, for fscanf, the integers are passed as pointers rather than values. You are telling 

fscanf where to put the values it scans.

The following is a program that uses our exponent function we made earlier. It 

prompts the user for two numbers separated by spaces and then computes the exponent 

of the first raised to the second:

exponentscanf.s

.globl main

.section .data

promptformat:

     .ascii "Enter two numbers separated by spaces, then press return.\n\0"

scanformat:

    .ascii "%d %d\0"

resultformat:

    .ascii "The result is %d.\n\0"

.section .text

.equ LOCAL_NUMBER, -8

.equ LOCAL_EXPONENT, -16

main:

    # Allocate space for two local variables

    enter $16, $0

    # Show the prompt to stdout

    movq stdout, %rdi

    movq $promptformat, %rsi

    movq $0, %rax

    call fprintf

    # Request the data

    movq stdin, %rdi
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    movq $scanformat, %rsi

    leaq LOCAL_NUMBER(%rbp), %rdx

    leaq LOCAL_EXPONENT(%rbp), %rcx

    movq $0, %rax

    call fscanf

    movq LOCAL_NUMBER(%rbp), %rdi

    movq LOCAL_EXPONENT(%rbp), %rsi

    call exponent

    movq stdout, %rdi

    movq $resultformat, %rsi

    movq %rax, %rdx

    movq $0, %rax

    call fprintf

    leave

    ret

This program calls the exponent function that you wrote in the file exponentfunc.s 

in Chapter 11. To build these programs together, issue the following command:

gcc -static exponentscanf.s exponentfunc.s -o exponentscanf

When run, this has a full input/output mechanism. This is how most programs 

in real life are written—the core “logic” of the program is written separately from the 

user interface, and the user interface sends the core logic the data it needs to process. 

Obviously, most real-world programs are much more advanced than this, but the 

principle remains the same.

12.7  Finding the Functions You Want
The standard C library is equipped with a huge variety of functions. Additionally, there 

are other libraries that have even more functions available. There are libraries and 

functions for networking, drawing, user interfaces, mathematics, typography, and more.

Unfortunately, there is not a universal location you can go to in order to find 

functions you need. You have to be generally familiar with the libraries and what they do 

and then read the documentation to figure out what the individual functions are called, 

what parameters they take, what results they return, and any side effects they have. 
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Most general-purpose functions are found in the C library that is available in Linux, 

known as the GNU C Library, or glibc. This is a superset of the standard C library and is 

automatically included in any program built on Linux using GCC.

The documentation for this library is a bit unwieldy simply because there are so 

many functions available. However, you can find the documentation online at www.

gnu.org/software/libc/documentation.html. If you know a function name and want 

to find out more about it, you can usually find this out by typing man 3 NAME on the 

command line, where NAME is the name of the function of interest.

Functions are usually specified using the conventions of the C programming 

language. We won’t get into the details of C here, but you can get the basics by looking at 

the declaration of the fopen function as follows:

 

Function Name

Return Value Type First Parameter Second Parameter

FILE *  fopen  ( const char *filename , const char *opentype  )


 

  

Anything that has a * after it means that it is a pointer to that type of value. So this 

takes two pointers to character sequences (i.e., ASCII values) and returns a pointer to a 

FILE data structure.

The abs declaration is as follows:

int abs(int number)

Here, int refers to an integer (a 32-bit integer on a 64-bit Linux operating system). 

So this function takes an integer as its first (and only) parameter (in %rdi) and returns an 

integer (which will be in %rax).

While the number of types in C is fairly extensive, most of the common ones are 

as follows. The sizes vary depending on the platform, and the ones listed are for 64-bit 

Linux operating systems.

char: An 8-bit signed integer (called a char because this is the 

same type used to store individual ASCII character values)

short: A 16-bit signed integer

int: A 32-bit signed integer

long: A 64-bit signed integer

long long: A 64-bit signed integer (this is a separate type because 

on 32-bit platforms, it is also 64 bits)
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These can also be prefixed with the word unsigned to indicate that they are always 

positive, and so the sign bit can be used to make the field take more potential values.

As mentioned, if a type ends with a *, that means it is a pointer to that type of 

data. Note that because the x86-64 platform is a little endian platform (see Chapter 7), 

this means that you can use pointers to larger sizes in places where smaller sizes are 

requested. So, if I have a pointer to a 64-bit value, I can send that pointer to something 

looking to store a 32-bit value, provided the other 32 bits are zeroed out beforehand.

Also note that, as far as calling conventions go, all of these can be essentially treated 

as 64-bit values.

Stickier issues occur when dealing with record types, called structs. These represent 

groups of values stored together in memory. These aren’t difficult conceptually, but 

there are just a lot of rules about how these are stored in memory, which we can’t 

effectively cover in this book.

 Exercises

 1. Now that you know how to perform input and output, convert 

two of your previous programs from having hard-coded inputs to 

having a prompt for the user and reading stdin for the value and 

then writing the result back out to stdout.

 2. Now convert those programs to open two files, one for reading 

and one for writing. It should read the values from one file and 

write the results to the other.

 3. Modify one of the programs that prompt the user for input so that, 

after displaying the answer, it goes back and starts the process all 

over. Note that pressing Ctrl+C will terminate the program if you 

need to.

 4. Modify the previous program so that the user is prompted after 

each iteration and asked if they want to keep going. Have them 

enter the number 1 to keep going, so you can scan for a number.

 5. The code to scan a single character is %c, which takes a pointer 

to a single byte (though you can also send it a pointer to a larger 

value than this if it is easier). Modify the program to ask the user to 

type Y to keep going.
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CHAPTER 13

Common and Useful 
Assembler Directives
The GNU Assembler has a whole plethora of directives, and this book only has the space 

for a few of them. Nonetheless, only a small handful are widely used. We have covered a 

number of them—.section, .quad, .ascii, .equ, etc. Here, we will look at several that 

are helpful, useful, or you are likely to see when looking at other code.

13.1  Reserving Space for Data
So far, we have used the .quad directive extensively and a little bit with the .byte 

directive. Along those lines there are two other directives for other value sizes. A 16-bit 

value is defined with a .short directive or the equivalent .value directive. A 32-bit value 

is defined with the .int directive or the .long directive. These value directives can be 

quite confusing because they don’t quite match other size annotations, either in x86 

assembly language or in the C language.1 If you want to be very specific, the directives 

.2byte, .4byte, and .8byte take up exactly as much space as they indicate.

Now, sometimes we need even more data than individual values. Perhaps we need a 

large buffer to store data from a file. Perhaps we need a large array of values. If we aren’t 

too picky about what belongs in those data locations on startup, we can use the .skip 

directive to simply reserve space.

.skip takes one or two arguments. The first argument is the number of bytes to 

reserve. The second (optional) argument is the value to put in these reserved locations.  

If not specified, the value will be zero.

1 Even more confusing are the additional directives .hword and .word. Even though .hword is 
supposed to mean “half-word,” it is actually the same size as .word (16 bits). Because of this 
confusion, I recommend not using either one.
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The .skip directive has two synonyms. .space and .zero both do the exact same 

thing, though, for obvious reasons, it would be weird to use the second argument with 

.zero.

So, if you wanted to reserve a 1,000-byte space, you could do so like the following:

mydata:

    .zero 1000

Here, mydata refers to the starting address of the 1,000 bytes, which are all initialized 

to zero.

Another data-oriented operation is .string. This is identical to .ascii, but it 

automatically appends the null byte to the end so you don’t have to write it. For this 

book, I prefer using .ascii since it is more clear exactly what is being stored. The .asciz 

directive is a synonym for .string.

13.2  Code and Data Alignment
Data alignment deals with what address that a value starts in memory. More 

specifically, whether that address is a multiple of some number.

You might find it odd that it matters whether an address is a multiple of a particular 

number. However, the physical organization of memory, data buses, and the CPU 

architecture mean that locating values at some multiples is faster than others. In the case 

of some advanced instructions, loading from an address that is not a multiple of the right 

number will actually fail and trigger a fault or exception.

In most computers, the speed issues are based on the word size of the computer. 

Since we are dealing with an 8-byte (64-bit) word, then it is optimal for memory fetches 

to be aligned to the nearest multiple of 8. Being out of alignment can slow down memory 

accesses. Some vector instructions use 16-byte (128-bit) words and require 16-byte 

alignment. This is why we always reserve space on the stack in multiples of 16 bytes (see 

Chapter 11). Even some functions that you may not expect to use vector instructions do 

so and will fault if the stack is not properly aligned.
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Because of these issues, the assembler offers directives to force the alignment of the 

next address. There are several alignment functions available on the GNU Assembler:

.balign: This directive aligns the next address to the given 

multiple. If I give the directive .balign 8, then the next memory 

address used will be a multiple of 8. By default, the spacing will be 

zero if you are in a data section or filled with the nop instruction 

if you are in a code section. You can also specify, via another 

parameter, what value to use in the skipped space.

.p2align: This directive is very similar to .balign except that 

instead of giving the number of bytes to find a multiple of, you 

are actually requesting the number of bits used for alignment. 

In other words, to align to 8 bytes, I would issue the command 

.p2align 3, because 23 = 8.

.align: This is not recommended to be used. For some 

configurations, it works like .p2align, and for others, it works like 

.balign. Therefore, it is best to use the specific one that you really 

want rather than this confusing directive. However, it normally 

acts like .balign.

Note that these alignment instructions, when done in .text sections, will pad with 

nop instructions rather than zero. This can be done to speed up code due to physical 

constraints of the processor. Essentially, heavily used sections of code and jmp targets 

both sometimes benefit from being aligned. nop instructions fill in the gap.2

13.3  Other Sections and Section Directives
Before we start talking about other sections, I wanted to point out that because the .data 

and .text sections are so frequently used, the assembler actually has specific directives 

for those. If you issue .data by itself as a directive, it is equivalent to issuing .section 

.data. Likewise with .text.

2 Also note that x86 actually has several different nop instructions of different sizes. The GNU 
Assembler will choose the proper instruction (or set of instructions) that will best fill the gap.
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However, these are not the only sections available. Other sections include

.rodata: The .rodata section contains data that cannot be 

modified. This is loaded into memory when the application is 

loaded and is marked as read-only. Attempts to write to this 

memory will result in the program aborting.

.bss: The .bss section contains uninitialized data. That is, rather 

than specifying values, you merely specify the size of data to be 

contained. This saves space in the executable, especially if there is 

a large amount of data here. The operating system initializes the 

.bss section to all zeroes. You can reserve data in the .bss section 

using the .zero or .skip directives.

These are not the only sections, but the other ones are somewhat internal to the 

system and aren’t especially useful to modify or mess with.

The following code will reserve 1,000 bytes in the .bss section and then also have a 

read-only value:

.section .bss

mydata:

    .zero 1000

.section .rodata

myreadonlydata:

    .quad 7

Since it is in the .bss section, the data starting at mydata does not have to be stored 

in the executable. Since it is in the .rodata section, the quadword at myreadonlydata 

cannot be written to, only read.

13.4  Local and Global Values
You can reserve data in the .bss section and give the address a name in one directive 

using the .lcomm directive. The .lcomm directive takes two parameters—the name of the 

symbol for the address and the amount of space required. .lcomm myvar, 8 reserves a 

quadword (8 bytes) in the .bss section and sets myvar to be the address of the start of 

this memory. Symbols defined using .lcomm are local by default—they are not visible 

outside of the current file unless otherwise marked with .globl.
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The .comm directive is like the .lcomm directive, but the linker will merge any symbol 

with an identical name to point to the same location. It means that the symbol, though it 

may be defined in more than one file, is common to all of them.

We have already seen the use of .globl to mark a defined symbol as being “global,” 

that is, relevant outside of the file it is defined in. If you want to, you can spell it all the 

way out with .global.

The GNU Assembler treats all undefined values as external, meaning that it is just 

going to assume that the linker will have another file that defines and exports them with 

a .globl directive. If you would like to be more specific about the symbols that you are 

assuming to be external, there is a .external directive available, but it does nothing on 

the GNU Assembler. It simply allows you to document which symbols you intend to use 

from other sources.

13.5  Including Other Code
When you break your code up into multiple files, oftentimes you will need to share 

various snippets/directives, especially .equ definitions. The .include directive will 

include the given file (put in quotation marks) into your source code. Note that the 

included file should not contain any code or data that are marked as .globl, as that will 

cause problems when files are linked, because then multiple assembly sources would be 

including the same externally facing definitions. Usually, included files don’t contain any 

code or data at all.

Sometimes, you want to include a binary file within your code. Let’s say that you 

wanted an image to be embedded within your object file. The .incbin directly will 

include a file verbatim into the resulting object file. The following code includes the file 

myimage.png at the address specified by the symbol myimage:

.section .data

myimage:

    .incbin "myimage.png"
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13.6  Annotating Code
Another set of directives helps you annotate your code, both for debugging and other 

purposes. The most important annotation is the .type directive. For symbols marked 

with .globl, the .type directive lets the linker know what kind of symbol it is—whether 

function (specifying @function) or data (specifying @object).

The following code marks myvar as the address of data and myfunc as the address of a 

function:

.globl myvar, myfunc

.type myvar, @object

.type myfunc, @function

.section .data

myvar:

    .quad 0

.section .text

myfunc:

    # Do things

    ret

Within functions, a set of directives known as CFI (control flow integrity) directives 

tell debuggers about where you are within a function. These are rather complicated, but 

if you see directives starting with .cfi_, they are essentially information items passed 

to debuggers and other tools to describe the intended flow of the program. This can be 

used by debuggers to give you more information about the state of your program at any 

given point or by security tools to verify that nothing fishy is going on. However, their 

complexity is too much of a nuisance to trouble with for programmers. They are inserted 

by compilers for adding context to assist debuggers and profilers. I wanted to point them 

out because if you look at assembly language code generated by GCC, you will find a lot 

of these in the code.
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 Exercises
Go through some of the code written for previous chapters and make use of these new 

directives:

 1. Convert .ascii directives to .string.

 2. Add .type annotations to symbols marked as .globl.

 3. Replace .quad directives with .8byte.

 4. Replace .quad directives where the initial value isn’t used with a 

.skip directive or an .lcomm directive. Also, move the data into the 

.bss section.

 5. Look for values which are not modified and move them to the 

.rodata section.
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CHAPTER 14

Dynamic Memory 
Allocation
So far, we have not gone into detail about what the memory layout of a Linux process 

looks like, primarily because we hadn’t covered enough material to make sense of it. In 

this chapter, we will look at how Linux processes work with memory and how to make 

your process request more memory from the operating system.

14.1  Virtual Memory
In reality, all memory addresses that your process uses are a lie. In order to protect 

programs from other programs that may have bugs or go rogue, modern operating 

systems use a virtual memory system so that each program appears to be alone in 

memory. What happens is that memory is arranged into physical blocks called pages. 

When a process runs, the operating system gives your program a certain number of 

memory pages and marks what address they will live at for your process. When we have 

a pointer to memory, that pointer is actually to the virtual address. We have no access 

to the physical address of that memory, just the virtual address. The virtual memory 

addresses that we have access to are known as our process’s address space.

Figure 14-1 gives a conceptual view of what this looks like. Each process “thinks” 

that it has access to a flat, unified, complete memory space. However, that is the virtual 

memory address space. The kernel actually takes those memory addresses and maps 

them onto physical RAM or to disk space (i.e., swap space).

The operating system can then use this to its advantage. As noted, a running 

program doesn’t even have to have all of its memory in physical RAM. The operating 

system can opt to move some of a process’s memory into swap space—a region of the 

hard drive designated to store such memory. The operating system then marks those 

pages as nonexistent. Then, when your process tries to access those pages, it triggers an 
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error in the operating system. The operating system determines that you were trying to 

access memory that was on disk.

The operating system then temporarily suspends your program while it moves that 

memory from disk into physical RAM. Once it is loaded in RAM, that memory page 

is remapped into your process’s address space, and the program is restarted at the 

instruction that caused the error. This time, however, since the page is physically in RAM, 

the instruction will succeed. All of this happens without your process having to know 

anything about what is going on.

14.2  Memory Layout of a Linux Process
The amount of space that is possible to cover with 64 bits is huge. However, in reality, the 

address space on x86-64 Linux is actually limited to 47 bits. That’s still enough to address 

128 terabytes of data! Of course, your computer doesn’t have 128 terabytes of data. So 

how does the process decide how much memory to give you?

By default, Linux only gives your process the minimal amount needed for your 

code, your data, the stack, and some extra room for operating system-related items. Any 

additional memory that you need must be requested to be mapped in to your process. 

We will cover this requesting process later in this chapter.
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The way that Linux lays out the process is roughly as follows (from higher addresses 

to lower addresses):

• UNMAPPED MEMORY and kernel shared memory (inaccessible)

• The stack (see Chapter 11 and Appendix G)

• UNMAPPED MEMORY

• Dynamically loaded libraries (see Chapter 15)

• UNMAPPED MEMORY

• The heap

• UNMAPPED MEMORY

• Uninitialized data area (the .bss section)

• Global program data (the .data section)

Figure 14-1. Conceptualizing How Process Virtual Memory Maps to Physical 
Memory
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• Read-only data (the .rodata section)

• The program itself (the .text section)

• Reserved kernel memory (inaccessible)

The areas marked as “UNMAPPED MEMORY” contain a huge number of memory 

addresses. If you try to access this space (or the reserved kernel memory), your program 

will crash, because it doesn’t actually point to any physical memory location, or, in the 

case of kernel memory, the memory is off-limits. Having these unmapped areas is a 

safety issue, because it allows the kernel to randomize the address space a little bit and 

make it harder for hackers to know where everything is ahead of time.

For this chapter, we are interested in the heap. The heap is a section of memory that 

can be continually grown throughout the lifetime of the program.

14.3  Allocating Additional Memory
As your program runs, if it needs more memory, it can ask the operating system for 

more, and if there are sufficient memory resources available (i.e., your system is not out 

of RAM and swap space), the operating system will add additional valid addresses to 

your address space. The program break is the point at which memory addresses are no 

longer valid. The program break can be moved, however, by requesting more memory 

from the operating system.

Managing this memory can be a bit of a chore. Memory management is a huge area 

of interest for computer programmers and computer language designers because it can 

get very complicated, and it is hard to devise a system that is both easy for programmers 

to use and fast for language and library designers to implement.

In the C library, memory management is handled by two core functions—malloc 

and free. The malloc function (i.e., “memory allocate”) asks the C library for memory. If 

there is free memory available in your process, malloc will return it. Otherwise, it will ask 

the operating system for more memory, and the operating system will move the program 

break to allow for you to have a larger address space to work with, assuming that there is 

in fact more memory available.

When you are done using the memory, you use the free function to return the 

memory. This doesn’t actually give back the memory to the operating system, but rather 

marks the memory as free so that a future malloc will be able to use it.
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malloc takes one parameter, the amount of memory you need, and returns the 

address of the memory that it allocated for you. free takes one parameter, the address of 

the memory that you requested, and doesn’t return anything at all. When calling these 

functions, it is important to obey the following rules:

 1. Always free any memory you allocated with malloc.

 2. Never use a pointer after you have called free on it.

 3. Never call free on a pointer that wasn’t allocated with malloc.

 4. Never call free more than once on a pointer.

If you fail to free a pointer allocated by malloc, that results in a memory leak, 

because you have memory that you are requesting but never disposing of when you are 

done.1 If you use a pointer after it is freed, then you may wind up accessing an invalid 

memory region or, worse, overwriting data that gets allocated at a later time.

The following is a short program that allocates 500 bytes of memory and then uses 

that as a buffer (temporary, usually fixed-length storage location) to read in data from 

stdin and then writes the data back out to stdout. Note that we could have allocated this 

data on the stack as well. The goal here is simply to show the action of malloc and free.

mallocdemo.s

.globl main

.section .data

scanformat:

    .ascii "%499s\0"

outformat:

    .ascii "%s\n\0"

.section .text

.equ LOCAL_BUFFER, -8

main:

    # Allocate one local variable (aligned to 16 bytes)

    enter $16, $0

1 Note that all memory gets disposed of when your program exits. Occasionally, there is reason to 
malloc without freeing if you plan on keeping the memory until the end of the program, but that 
is pretty rare.
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    # Get the memory and store it in our local variable

    movq $500, %rdi

    call malloc

    movq %rax, LOCAL_BUFFER(%rbp)

    movq $5, (%rax)

    # Read the data from stdin

    movq stdin, %rdi

    movq $scanformat, %rsi

    movq LOCAL_BUFFER(%rbp), %rdx

    movq $0, %rax

    call fscanf

    # Write the data to stdout

    movq stdout, %rdi

    movq $outformat, %rsi

    movq LOCAL_BUFFER(%rbp), %rdx

    movq $0, %rax

    call fprintf

    # Free the buffer

    movq LOCAL_BUFFER(%rbp), %rdi

    call free

    # Return

    movq $0, %rax

    leave

    ret

As is usual with apps that use the C library, you can build and run this with the 

following command:

gcc -static mallocdemo.s -o mallocdemo

The format string for fscanf probably needs a little explanation. The %s format 

specifier tells fscanf to read a string up until it finds whitespace (a space or a return). 

However, you only send it a memory address where to store that string. This means 

that fscanf, just on this information, won’t know how much space it is allowed to use. 
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The number between the % and the s is the maximum number of characters that can be 

read into our buffer. It’s set to be 499 instead of 500 because fscanf will also include a 

null character, so we need to make sure our buffer has space for the null after all of the 

characters are in.

If you don’t specify a number, then, if the user types more characters than you have 

allocated, the fscanf function can’t know that. It will just keep adding characters to the 

buffer, even if it goes beyond the end of the buffer. This is known as a buffer overflow. 

If the buffer was allocated on the stack instead of the heap, this would be known as a 

stack overflow. These sorts of issues cause problems because it means that a function is 

overwriting memory not allocated for its use. In the best situations, this causes a fault. A 

worse situation is where it corrupts data and you don’t even notice until a long time later. 

An even worse situation is if someone else discovers the problem before you do and 

exploits it as a security breach. As an example, on a stack overflow, if the attacker writes 

data beyond memory boundaries, they could potentially modify a return address and 

cause your program to execute their code.

14.4  Writing Your Own malloc Implementation
Most programmers use malloc all day long, but never stop to think how it is 

implemented. Here, I will show you a simple naive implementation of malloc and free. 

We will call them allocate and deallocate. Real implementations of malloc are much 

more complex, but this implementation should at least give you some insight into the 

kinds of considerations that go into these functions.

We mentioned the program break earlier. As we need more memory, we will ask the 

operating system to move the program break using the brk system call (call number 12). 

This system call tells the operating system where we want the new program break to be. 

If we send in a null pointer (0), it will tell us where the program break currently is.

The way we will keep track of our memory is that when we allocate memory, we 

will actually allocate two additional quadwords of memory than was asked for—one 

quadword for the size of the memory block and one quadword for whether or not 

the block is currently in use. We will actually return a pointer to the memory that is 

immediately after these two quadwords.

As each request for memory is asked, we will walk through our list of allocated 

memory looking for existing freed space that is sufficiently big to fill our needs. If it finds 
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an open space, it returns it. If there are no open spaces, it asks the system to move the 

system break to allocate more space.

allocate.s

.globl allocate, deallocate

.section .data

memory_start:

    .quad 0

memory_end:

    .quad 0

.section .text

.equ HEADER_SIZE, 16

.equ HDR_IN_USE_OFFSET, 0

.equ HDR_SIZE_OFFSET, 8

.equ BRK_SYSCALL, 12

# Register usage:

#  - %rdx - size requested

#  - %rsi - pointer to current memory being examined

#  - %rcx - copy of memory_end

allocate_init:

    # Find the program break.

    movq $0, %rdi

    movq $BRK_SYSCALL, %rax

    syscall

    # The current break will be both the start and end of our memory

    movq %rax, memory_start

    movq %rax, memory_end

    jmp allocate_continue

allocate_move_break:

    # Old break is saved in %r8 to return to user

    movq %rcx, %r8
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    # Calculate where we want the new break to be

    # (old break + size)

    movq %rcx, %rdi

    addq %rdx, %rdi

    # Save this value

    movq %rdi, memory_end

    # Tell Linux where the new break is

    movq $BRK_SYSCALL, %rax

    syscall

    # Address is in %r8 - mark size and availability

    movq $1, HDR_IN_USE_OFFSET(%r8)

    movq %rdx, HDR_SIZE_OFFSET(%r8)

    # Actual return value is beyond our header

    addq $HEADER_SIZE, %r8

    movq %r8, %rax

    ret

allocate:

    # Save the amount requested into %rdx

    movq %rdi, %rdx

    # Actual amount needed is actually larger

    addq $HEADER_SIZE, %rdx

    # If we haven't initialized, do so

    cmpq $0, memory_start

    je allocate_init

allocate_continue:

    movq memory_start, %rsi

    movq memory_end, %rcx

allocate_loop:

    # If we have reached the end of memory

    # we have to allocate new memory by

    # moving the break.

    cmpq %rsi, %rcx
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    je allocate_move_break

    # is the next block available?

    cmpq $0, HDR_IN_USE_OFFSET(%rsi)

    jne try_next_block

    # is the next block big enough?

    cmpq %rdx, HDR_SIZE_OFFSET(%rsi)

    jb try_next_block

    # This block is great!

    # Mark it as unavailable

    movq $1, HDR_IN_USE_OFFSET(%rsi)

    # Move beyond the header

    addq $HEADER_SIZE, %rsi

    # Return the value

    movq %rsi, %rax

    ret

try_next_block:

    # This block didn't work, move to the next one

    addq HDR_SIZE_OFFSET(%rsi), %rsi

    jmp allocate_loop

deallocate:

    # Free is simple - just mark the block as available

    movq $0, HDR_IN_USE_OFFSET - HEADER_SIZE(%rdi)

    ret

A slightly better implementation would align addresses to 16-byte boundaries, 

as those are preferred on the x86-64 architecture. However, getting this set up and 

calculated correctly would probably make the code a lot harder to follow.

The following is a short demonstration program to see this allocator in action. 

Basically, you can see that it will allocate several addresses, free one of them, and then 

only reuse that space if there is a small enough allocation requested to fit in it. It then 

ends by doing an fscanf and fprintf to show the usage of the allocated memory in 

action. Even if you are not familiar with the C language, you should be able to follow the 

code reasonably well.
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usealloc.c

#include<stdio.h>

void *allocate(int);

void deallocate(void *);

int main() {

    char *a1 = allocate(500);

    char *a2 = allocate(1000);

    char *a3 = allocate(100);

    fprintf(stdout, "Allocations: %d, %d, %d\n", a1, a2, a3);

    deallocate(a1);

    char *a4 = allocate(1000);

    char *a5 = allocate(250);

    char *a6 = allocate(250);

     fprintf(stdout, "Allocations: %d, %d, %d, %d, %d, %d\n", a1, a2, a3, 

a4, a5, a6);

    fscanf(stdin, "%s", a5);

    fprintf(stdout, "%s", a5);

}

To build the code with the allocator, just do

gcc -static allocate.s usealloc.c -o usealloc

You can then run the program using ./usealloc.

Note, however, that using this allocator can be problematic if integrating with other 

code because the system malloc and free are probably also using the brk system call. As 

mentioned, this is primarily for demonstration purposes anyway.
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14.5  The mmap System Call
In addition to setting the program break, you can also request larger blocks from the 

operating system. This is done using the mmap system call (system call number 9). In 

order that mmap and brk don’t compete with each other, mmap usually allocates from 

much higher up in the address space. Unlike brk, which asks for specific memory 

locations, the addresses given by mmap are determined by the Linux kernel itself. Linux 

allows you to request an address, but Linux can override your decision. Also unlike brk, 

mmap is limited to allocating in page-size increments, which is 4096 bytes on Linux x86- 

64. You can request other sizes, but the allocation itself will be rounded up to the nearest 

page size.

We aren’t going to go into detail about mmap in this book, but the call is extremely 

flexible. Not only can you ask it for memory, you can ask it to treat a file as if it were just 

memory! That is, given an open file, the operating system will simply cause a region of 

memory to act as if it were your file itself. Loading from the memory reads the file and 

writing to the memory writes to the file.

The mmap system call takes the following parameters:

 1. Requested target address: Leave this as a null pointer to let Linux 

choose the address for you. Linux can override this address.

 2. Length of allocation in bytes: It is best to make this a multiple of 

4096 since Linux allocates in page-size increments anyway.

 3. Protection flags: These allow you to specify whether this memory 

is read-only (0x01) or read-write (0x03). Other advanced options 

are available as well.

 4. General flags: There are a lot of flags available. For most purposes, 

you should set the MAP_PRIVATE flag (0x02). If your allocation is 

not based on a file, you should set the MAP_ANONYMOUS flag (0x20), 

which tells Linux to ignore the file descriptor and just allocate 

more memory. Combining these two flags gives you 0x22.

 5. File descriptor: If you are mapping a file into memory, this should 

be the file descriptor (received from a previous file open system 

call). If you are just requesting memory not tied to a file, you 

should have the MAP_ANONYMOUS flag set in the “general flags” and 

set this to -1.
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 6. Offset: If you are mapping a file into memory, you can use this to 

tell Linux where in the file to start. Otherwise, set this to zero.

The return value (in %rax) is the memory address allocated if successful or –1 if not.

To request a memory block that is two pages long would require a request like the 

following:

movq $9, %rax      # mmap syscall number

movq $0, %rdi      # Linux chooses the destination

movq $8192, %rsi   # Two pages of memory

movq $0x03, %rdx   # Memory should be read-write

movq $0x22, %r10   # Requesting private memory not tied to a file

movq $-1, %r8      # No file descriptor attached

movq $0, %r9       # No offset requested

syscall

# Result in %rax

To return allocated memory to the operating system, use the munmap system call (call 

number 11). It takes two parameters—the memory address to unmap (%rdi) and the size 

(%rsi).

The mmap system call is very flexible, but adds a significant amount of complication. 

It’s sufficiently important that I wanted to bring it to your attention, but sufficiently 

complicated that using it effectively is outside the scope of this book.

If we were to imagine an allocator similar to the one earlier based on mmap, it would 

need to request whole pages at a time. Therefore, you would need to have two levels 

of allocation—block allocation and then individual memory allocations. Then, when 

a program requests memory, it would need to walk both the blocks and the individual 

allocations within that block to find the memory.

 Exercises

 1. Create a program that uses your allocate function that allows a 

user to type in how many bytes they want to allocate, allocates that 

amount of memory, displays the address that was allocated, then 

fills the space with the letter a terminated with a null, and then 

prints out that string.
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 2. Create a program similar to the previous one, but which does so 

in a loop. Be sure to free the allocations when you are done with 

them. Notice how the allocations are reused if the allocation is 

small enough, but are allocated new if the allocation is too large to 

fit in a previous allocation.

 3. Modify the allocate function to make sure all allocations occur 

on 16-byte boundaries.

 4. If you are really adventurous, try rewriting the allocate function 

to use mmap instead of brk.
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CHAPTER 15

Dynamic Linking
So far, all of our code that we have written has been statically linked. This means that all 

of the code is physically contained within the final executable. The linker literally brings 

all of the code together, figures out which object file has which functions and memory 

locations defined in them, and builds a single executable which can be loaded and run 

on Linux. If you make calls to the standard C library (or other libraries), those functions 

are themselves physically copied into your program.

An alternative approach is known as dynamic linking. With dynamic linking, 

libraries stay as separate files, and they are merely referenced by your code. They are 

only brought together when (or sometimes after) your program is run. This is more 

flexible because if code lives in libraries, the libraries can be upgraded separately from 

the applications. Therefore, if there is a security problem in a library, the only thing that 

has to be changed is the library itself. This also saves disk space because the individual 

functions are not copied into each application program, but only exist in one place in the 

filesystem. These libraries are called shared libraries.

On Linux system, shared libraries are also known as shared objects and have the 

extension .so. On Windows systems, they are known as dynamic link libraries and 

have the extension .dll, and on Macs, they are called dynamic libraries and have 

the extension .dylib (although the .so extension is used as well). These terms are all 

basically interchangeable, and which one is used depends largely on preference.

In this chapter, we are going to discuss how to build and use shared libraries on 

Linux.
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15.1  Linking to a Shared Library
Let’s write a short program that merely calls fprintf:

link_example.s

.globl main

.section .data

output:

    .ascii "hello\n\0"

.section .text

main:

    enter $0, $0

    movq stdout, %rdi

    movq $output, %rsi

    call fprintf

    movq $0, %rax

    leave

    ret

Typically, we have compiled this into a static executable using a command like this:

gcc -static link_example.s -o link_example

This statically links the program into link_example, so you can run it with ./link_

example. If you look at the size of the file using ls -l link_example, it is fairly large—almost 

a megabyte on my system. Part of this is debugging information. You can strip off excess 

debugging information using the strip command. If you type in strip link_example, it will 

reduce the file size by about a third. However, this is still pretty large.

To see that this is a statically linked file, we can trace the dynamic loading of files 

using the ldd command. ldd tells us all of the shared libraries. We can run ldd link_

example, and it will say, “not a dynamic executable.” In other words, we compiled it with 

everything statically linked.
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Note that even as a static executable, the file still has a format, known as ELF 

(Executable and Linking Format). This format is used by the Linux kernel to load the 

file into the right location in memory and start it. The objdump command can be used to 

inspect ELF executables, even if they are statically linked. Running objdump -x link_

example will show you all of the metadata contained in the ELF format. On an unstripped 

executable, there’s actually quite a bit of information. But, for a statically linked, stripped 

executable, it is primarily a list of program sections, where they will be loaded into 

memory, and any additional details on how the section will be loaded into memory.

To link to the C library dynamically, all we have to do is replace -static with  

 -rdynamic in the command line:1

gcc -rdynamic link_example.s -o link_example

This new link_example program runs identically to the previous program, but it now 

loads its libraries dynamically when it in invoked. The executable size has dropped from 

a megabyte to about 16 kilobytes! That’s because the fprintf function brought in a lot 

of dependencies in the C library, which, when statically linked, added up to a lot code 

compiled in to the final executable. Now that we are dynamically linking, all of that stays 

in the C library!

You can see the list of dependencies by running ldd link_example. This will list out 

the libraries and where they are loaded into memory (which may vary each time you 

call it). On my computer, the output looks like this:

linux-vdso.so.1 (0x00007fffd373a000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fedf3205000)

/lib64/ld-linux-x86-64.so.2 (0x00007fedf33d4000)

Let’s start at the end of the list. That last entry is the loader.2 The loader is a program that 

reads your program file and loads it into memory as well as any relevant libraries. The loader 

is usually named with some form of ld.so.3 This is the library that actually does the loading 

itself. In fact, it is itself an executable. You can even run /lib64/ld- linux- x86-64.so.2, and 

1 Actually, on most systems, simply dropping -static will default to -rdynamic, but for beginners, 
I think being explicit is more helpful.

2 Note that the loader is sometimes referred to as a linker as well, since it links together the 
executable and libraries at runtime. To avoid confusion, it will always be referred to as the loader 
here.

3 The name of the file indicates that it is the loader for Linux x86-64 binaries, version 2. Linux 
actually supports multiple loaders.
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it will give you a help screen. When you run your dynamic executable, it actually starts by 

loading up this program and sending it your program name as a parameter. The  

command /lib64/ld-linux-x86-64.so.2 ./link_example will produce equivalent results 

as running the program directly.

The next entry is libc.so.6. This is the C library, version 6. libc.so.6 is known as 

the soname (shared object name) and is the official name of the library. The arrow after 

the library soname indicates where on the system the library can be found. This allows 

the executable to know what library to link to and the dynamic link loader to know where 

to find it.

Finally, the linux-vdso.so.1 library is a special library, called the vDSO library, 

provided by the Linux kernel itself. This library allows fast execution of certain kernel 

functions, such as time functions, which don’t require any particular privilege level to 

access. Calling these functions allows you to get public system information without 

actually invoking a system call. Calling the functions from this library directly is not 

recommended unless you are building a C library yourself.

If we had linked against other libraries, they would also be listed here.

You can use objdump to see what the loader sees. If you run objdump -R link_

example, it will show you what relocations the loader will make for your program. Some 

of them are internal to how GCC works, but you should also see relocations for stdout 

and fprintf. These records tell the loader which symbols it is going to have to look up.

15.2  How the Loader Works
When your code compiles, it has a list of symbols that it couldn’t find within the main 

code itself. The compiler/linker then examines the list of libraries you asked it to compile 

with.4 It makes sure that all of the symbols that it couldn’t find within your code are 

found in one of the shared libraries. It then records all of the shared libraries that you 

requested that it link with into the executable. It doesn’t record the loader or the vDSO 

library, as those are provided/invoked by the kernel itself.

Each function symbol that is found is added to both the Procedure Linkage Table, 

or PLT, and the Global Offset Table, or GOT. The PLT contains an indirect jump 

instruction to the location specified in the GOT. Interestingly, the GOT doesn’t start out 

4 The C library is implicitly assumed to be in the list of libraries to link with—it doesn’t need to be 
explicitly requested.
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with the location of the function. Rather, it contains a bit of “glue code” which tells the 

loader to look up the symbol and replace the symbol in the GOT with the actual value of 

the function (this is known as lazy loading).

This indirection allows the executable to be loaded quickly (without having to wait 

for relocations that may never be used), but speeds itself up by replacing the indirect 

lookups with the actual values as the program continues to run.5

So, for instance, the instruction call fprintf will cause the loader to do the 

following:

 1. Create an entry for fprintf in the GOT, initially set to be the 

search function for this symbol.

 2. Create an entry for fprintf in the PLT, set to be an indirect jump 

to function listed in the GOT. This symbol is named fprintf@plt.

 3. Modifies the call fprintf to call fprintf@plt. This way, 

the code is unmodified, and only the GOT will be modified at 

runtime.

 4. When the call to fprintf@plt is invoked the first time, the loader 

fixes up the value in the GOT to point to the real fprintf function.

 5. On subsequent calls to fprintf@plt, the indirect jump to the GOT 

entry will point to the fprintf function itself.

For data fields (such as stdout), these are recorded into the GOT immediately when 

the loader loads the program. However, our code can use them directly (without going 

through the GOT) because, even though stdout is defined by the external library, the 

definition of stdout is actually localized into the main program. It will live where the 

linker for the executable tells it to live. This is known as a copy relocation.

5 You can actually force the loader to do this ahead of time. If you set the environment variable LD_
BIND_NOW to a non-empty string, it will resolve all of the functions in the PLT before the program 
even starts.
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15.3  Building a Basic Shared Library
In this section, we’ll learn how to build a basic shared library. This library will have an 

extremely simple function in it, squareme, which squares its first parameter. The code is 

as follows:

squareme.s

.globl squareme

.section .text

squareme:

    movq %rdi, %rax

    imulq %rdi

    ret

We will also write a program which uses squareme:

run_squareme.s

.global main

.section .data

value:

    .quad 6

output:

    .ascii "The square of %d is %d\n\0"

.section .text

main:

    enter $0, $0

    movq value, %rdi

    call squareme

    movq stdout, %rdi

    movq $output, %rsi

    movq value, %rdx
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    movq %rax, %rcx

    call fprintf

    leave

    ret

We can build these together statically relatively easily by just compiling them 

together as usual:

gcc -static squareme.s run_squareme.s -o run_squareme

However, let’s say that we wanted a math library of reusable math functions. Let’s 

call this library libmymath.so. To do this, we can build squareme into a library using the 

following command:

gcc -shared squareme.s -o libmymath.so

We can then compile the main application to reference the library:

gcc run_squareme.s -lmymath -L . -o run_squareme

This will build run_squareme against our shared library. The -lmymath argument says 

to link against the libmymath.so library (it automatically adds the lib prefix and .so 

suffix), and the -L . argument says to add the current directory to the list of directories 

to look in for libraries.

However, if you try to run this command right now, it will give an error. Running 

./run_squareme will give the error error while loading shared libraries: 

libmymath.so: cannot open shared object file: No such file or directory. 

This is because while we told GCC where to find the library, the loader has no idea where 

it is. Therefore, we have to tell the loader where else it should look for libraries as well. 

We can do that with the LD_LIBRARY_PATH environment variable. If you run export LD_

LIBRARY_PATH=. and then run the command, it will work.

Libraries are usually permanently installed by copying them to /usr/lib and then 

running ldconfig as root (this latter part is not always necessary). This is one of the 

default locations the loader looks for libraries.
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15.4  Position-Independent Code
The problem with shared libraries is that the loader can actually map them anywhere 

in memory. In fact, one of the security precautions that Linux distributions usually take 

is to randomize address spaces, so that libraries can be loaded anywhere in the address 

space. The location that a library is loaded into memory is known as the base address.

However, this means that libraries have to be specially written so that moving 

them around in memory does not cause them to break. This type of code is known as 

position-independent code, or PIC.

There are three main areas where code needs to be modified in order to be position 

independent:

 1. References to external functions

 2. References to the .data section of the library

 3. References to externally defined data (such as stdout)

The references to external functions are handled relatively automatically by the linker 

and loader using the same PLT/GOT mechanism described before. If you look at PIC 

assembly language generated by other tools (see Chapter 16), they will normally have the 

call fprintf@plt encoded directly in the assembly language, rather than having the 

linker take care of that. Either way works perfectly fine, though explicitly referencing the 

PLT can help you remember that the function call is going through a level of indirection.

 Referencing the .data Section
References to addresses in the .data section of the library are handled through an 

addressing mode known as PC-relative addressing. This addressing mode records 

addresses of data as an offset of the current instruction pointer.

The following function illustrates how this is done:6

multbyten.s

.globl multbyten

.section .data

6 The code loads the value 10 from the .data section instead of using immediate mode in order to 
illustrate the concept.
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ten:

    .quad 10

.section .text

multbyten:

    movq ten(%rip), %rax

    imulq %rdi

    ret

The line movq ten(%rip), %rax utilizes PC-relative addressing. This says that we 

need the address ten, but to encode it as a relative offset of the instruction pointer at this 

location. Therefore, no matter where in memory the library (and its data) gets loaded, it 

will still know where ten is, because it is a fixed offset from that location in the code.7

PC-relative addressing was introduced in the x86-64 instruction set architecture. 

Before that, a much more complicated scheme was required in order to access data 

section variables.

 Referencing Externally Defined Data
To reference externally defined data such as stdout, we will have to do two-step lookups 

using the GOT. However, to do this, we actually need to use a special symbol, GOTPCREL.

Let’s say, for instance, we want to load stdout into %rdi. Previously, we could do this 

with just movq stdout, %rdi. However, we don’t actually know where stdout will wind 

up living (remember, it’s actually defined elsewhere). Therefore, we have to look up the 

address of stdout in the GOT and then use that address to load the actual value.

To do this, we need to execute two instructions:

movq stdout@GOTPCREL(%rip), %rdi

movq (%rdi), %rdi

The first instruction finds the location of the variable in the Global Offset Table using 

PC-relative addressing and then loads that into %rdi. The special symbol GOTPCREL is a 

7 Note that PC-relative addressing actually violates the address calculation method described in 
Chapter 6, but it is easy to remember that if %rip is the base register, then the value will simply be 
the offset from the current location in code to that value. Also note that PC-relative addressing 
does not support the index or the scale. If those are needed, you will need to use the leaq 
instruction to get the address and then use other instructions to manipulate the address how it is 
needed.
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PC-relative location of the GOT. The second instruction then uses that location to look 

up the value of stdout itself.

The following is the code for a simple function, printstuff, that uses this idea:

printstuff.s

.globl printstuff

.section .data

mytext:

    .ascii "hello there\n\0"

.section .text

printstuff:

    enter $0, $0

    movq stdout@GOTPCREL(%rip), %rdi

    movq (%rdi), %rdi

    leaq mytext(%rip), %rsi

    call fprintf@plt

    leave

    ret

This code loads stdout into %rdi using the GOT. Then, it loads the address of the 

string into %rsi using PC-relative addressing. Finally, it calls fprintf using the PLT. Also 

remember that enter and leave are required when calling other functions in order to 

make sure that the stack is properly maintained.

15.5  Calling from C
We can now compile all three of these into a single shared library. Issue the following 

command to add all three functions to libmymath.so:

gcc -shared printstuff.s multbyten.s squareme.s -o libmymath.so
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Because we follow the ABI conventions, we can call this either from an assembly 

language program or from a C program. The following is a simple program that uses 

these functions:

use_mymath.c

#include<stdio.h>

long squareme(long);

long multbyten(long);

void printstuff();

int main() {

    long number = 4;

     fprintf(stdout, "The square of %d is %d\n", number, squareme(number));

    fprintf(stdout, "Ten times %d is %d\n", number, multbyten(number));

    printstuff();

}

To build, we just do

gcc -rdynamic use_mymath.c -lmymath -L . -o use_mymath

Then we can run it with ./use_mymath (assuming LD_LIBRARY_PATH is still set).

15.6  Skipping the PLT
When calling functions, you can actually skip the PLT and call the entry in the GOT 

directly. This will force the loader to load the value immediately before the program 

starts rather than lazy loading it like it does when called through the PLT.

To do this, simply replace function calls with PC-relative indirect calls to the entry 

in the GOT. For instance, to call fprintf, rather than issuing call fprintf or call 

fprintf@plt, you can use the following instruction:

call *fprintf@GOTPCREL(%rip)

Doing this improves execution speed, but with some cost of startup speed on large 

programs.
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15.7  Position-Independent Executables
Not only can libraries be position independent, so can your main program! You can write 

your main program as if it were a shared library and then compile it to be a position- 
independent executable (or PIE). The advantage of this is that it makes it harder for 

exploits to misuse your code because the executable itself may not be loaded into the 

normal location.

The following code is just like the previous code for link_example.s, except written 

in a position-independent manner:

link_example_pie.s

.globl main

.section .data

output:

    .ascii "hello\n\0"

.section .text

main:

    enter $0, $0

    movq stdout@GOTPCREL(%rip), %rdi

    movq (%rdi), %rdi

    leaq output(%rip), %rsi

    call fprintf

    movq $0, %rax

    leave

    ret

Then, to build this as a PIE, you can run the following:

gcc -pie link_example_pie.s -o link_example_pie

The result isn’t significantly different than before, but if you run it under GDB (GNU 

debugger) (see Appendix C), you will notice that the addresses changes every time it is 

run.

Chapter 15  DynamiC Linking



199

15.8  Force-Feeding Functions to the Executables
Another benefit of shared libraries and dynamic loading of libraries is the ability to force- 

feed functions into a program. In a program, any function which is in a shared library 

can be overridden by the user.

The loader supports an environment variable called LD_PRELOAD, which preloads a 

library’s symbols into an executable before it loads in the shared libraries requested by 

the executable. Therefore, if a symbol was already defined by the library specified by LD_

PRELOAD, then that symbol is preferred to symbols loaded later. You can use this feature 

to override library functions with your own, even if the code is already compiled, and 

you don’t have access to the source code!

This is oftentimes used to provide better versions of various system functions such 

as malloc, such as providing a more optimized version, or even providing a garbage- 

collecting version of it. This is harder than it seems, as many functions have a lot of 

unknown interactions with global variables, other functions, and various other side 

effects, so just replacing functions willy-nilly will often just lead to crashes.

As a simple example, though, the following code can be used as a drop-in 

replacement for fprintf in simple cases. Instead of doing what you wanted fprintf to 

do, it will instead print, “Haha! I intercepted you!” using the write system call.

fprintf_override.s

.globl fprintf

.section .data

mytext:

    .ascii "Haha! I intercepted you!\n"

mytextend:

.section .text

fprintf:

    movq $1, %rax

    movq $1, %rdi

    leaq mytext(%rip), %rsi

    movq $(mytextend - mytext), %rdx

    syscall

    ret
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To compile this, do gcc -shared fprintf_override.s -o liboverride.so. Then, 

to force this to preload on commands, enter export LD_PRELOAD=./liboverride.

so. Now, any command that you run which called fprintf will now call your function 

instead!

To try it out, use the following commands:

export LD_PRELOAD=./liboverride.so

./use_mymath

To unset LD_PRELOAD, you can either set it to an empty string or run unset LD_

PRELOAD. I would advise doing this before accidentally running other commands and 

having them error out because fprintf isn’t working!

15.9  Loading Libraries Manually
In addition to the loader loading libraries when your application starts, you can also 

load them manually as well. The dlopen and dlsym functions allow you to open a shared 

library and get symbol references from them. This is often used for adding plugins to 

code.

The dlopen function specifies the filename of a shared library to open, as well as 

a parameter of flags for opening the library. It returns a pointer to the handle for the 

shared library, which you can use to look up symbols with dlsym. The dlsym function 

searches the shared library for the specified symbol and, if found, returns its value 

(usually a pointer).

The following code will load the libmymath.so library manually, find the pointer to 

the printstuff function from the library, and then call it:

manual_load.s

.globl main

.section .data

filename:

    .ascii "libmymath.so\0"

functionname:

    .ascii "printstuff\0"
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.section .text

main:

    enter $0, $0

    movq $filename, %rdi

    movq $1, %rsi  # the flag for lazy-loading

    call dlopen

    movq %rax, %rdi

    movq $functionname, %rsi

    call dlsym

    call *%rax

    leave

    ret

To get access to these functions, we will need to link with the libdl.so library. 

Therefore, we will need to build with the following command:

gcc -rdynamic manual_load.s -ldl -o manual_load

Now, running ./manual_load will load the library manually and call the function 

from it!

 Exercises

 1. Take two programs from earlier in this book and rewrite them as 

PIE executables.

 2. Add the factorial function built earlier to the libmymath.so library.

 3. Write a program that uses both the C library to read a number and 

the libmymath.so library to find the factorial of the number. Be 

sure to set the environment variables so the loader can find the 

library before you run it.

 4. Look at the various shared libraries on your system. Search the 

Internet to find out what some of them do.
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CHAPTER 16

Basic Language Features 
Represented in Assembly 
Language
The goal of this part of the book is to demonstrate how features from higher-level 

programming languages map onto assembly language. Whether assembly language is 

your first programming language or your hundredth, its primary usage for the average 

programmer is to give them insight into what’s really happening under the hood of 

whatever language they are programming in.

However, there are a large number of programming languages out there. We aren’t 

going to pick any particular programming language, but will generally look at languages 

that come from the C family of languages. We will look at various programming language 

options (such as memory management and object orientation) and how those can be 

translated into the lowest levels in assembly language.

If you have used any C-like language (Java, C++, Swift, Go, etc.), the pseudo-code 

here should look familiar. The point, however, is that my goal is not for you to know 

all the particulars of a specific language implementation, but more to better imagine 

how these things can work so that if you’re interested in a language, you can read their 

documentation and have a better starting point for what they are talking about.

If assembly language is your first language, I would suggest that you gain some 

familiarity with other programming languages before proceeding on to this part of the book.

This chapter mostly covers things that should be fairly obvious from previous 

chapters in the book, but we also try to expand the ideas further. The one genuinely new 

concept is the discussion of tail-call elimination at the end of the chapter.

https://doi.org/10.1007/978-1-4842-7437-8_16#DOI
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16.1  Global Variables
Global variables are usually just implemented as labeled parts of the .data section. We 

have run into code like this over and over again:

my_variable:

    .quad 29

This is essentially equivalent to having a global variable my_variable set to the value 29.

However, many programming languages allow you to also have global variables 

which are uninitialized at the beginning of the program. These are usually placed in a 

different section of your assembly language program. The .bss section is like the data 

section, except that you don’t specify any values, just the amount of space needed. This 

allows you to reserve space for the running program, without actually taking up that 

space on disk if there isn’t a starting value.

A global variable using the .bss section looks like this:

.section .bss

my_variable:

    .skip 8

The .skip directive tells the assembler to advance the current address it is thinking 

about (8 bytes in this case).

Another important directive related to global variables is the .balign directive. This 

directive makes sure that the next address is aligned to the specific byte boundary. This 

is important because proper alignment can make the processor faster (see Appendix I), 

and a very few highly specialized instructions require certain alignments. The directive 

.balign 8 will align the next address to an 8-byte boundary, while the .balign 16 will 

align the next address to a 16-byte boundary.

16.2  Local Variables
Local variables can be implemented either simply as registers or as reserved memory 

on the current stack frame (see Chapter 11). The enter instruction is used to set up all of 

the local variables used for a function no matter where in the function they are declared. 

Most programming languages allow you to declare a variable anywhere you want in the 
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function, but, under the hood, they all get wrapped up into the same enter instruction at 

the beginning of the function.

Additionally, it is not uncommon for programming languages to reuse registers, stack 

variables, and the like if a previous variable stops being used. This is bad practice if you 

are hand-coding assembly language, because it makes the code much harder to read.

16.3  Conditional Statements
Conditional statements are fairly easy to imagine how to put into assembly language. 

Imagine the following code:

if(a > b) {

    // DoSomething

} else {

    // DoAlternate

}

// CodeContinues

This can be implemented by adding two labels to the code. The first label is to the 

success branch (i.e., DoSomething). The second label should be on CodeContinues. In 

assembly language, assuming %rax contains a and %rbx contains b, this looks like

    cmpq \rbx, \rax

    jg DoSomething

    # DoAlternate here

    jmp CodeContinues

DoSomething:

    # DoSomething here

CodeContinues:

    # Continue on here

As you can see, the branch DoSomething naturally flows onto CodeContinues, but 

DoAlternate has to jump there to avoid also executing DoSomething.
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16.4  Loops
Loops are not much different than conditional branching. They simply contain an 

additional jump at the end of the loop back to the beginning.

Let’s look at the following basic while loop:

a = 0

// LoopStart

while(a < b) {

    // DoSomething

    a++

}

// CodeContinues

This loop has a comparison, but, actually, it is the reverse of the comparison that we 

are interested in. If the comparison succeeds, then we just continue to DoSomething. 

However, if the comparison fails, that’s when we jump out to CodeContinues. So we will 

need to reverse our comparison here. Then, at the end of the loop, we will need to jump 

back to LoopStart.

Assuming a is in %rax and b is in %rbx, here is the assembly language code:

    movq $0, %rax       # Initialize the loop

LoopStart:

    cmpq %rbx, %rax

    jge CodeContinues   # Opposite of original while comparison

    # DoSomething

    incq %rax

    jmp LoopStart       # Go back to the beginning of the loop

CodeContinues:

    # Continue on here

You can write any loop (such as a for loop) in terms of a while loop, so the preceding 

translation works for pretty much any loop you might run into.
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16.5  Function Calls and Default Values
Function calls are fairly straightforward, as we already discussed them at length in 

Chapter 11. Additional information when dealing with passing floating-point values is 

available in Appendix F.

However, many programming languages also allow default values to be specified for 

various parameters. This can be accomplished in a variety of ways:

• It can be done at compile time, where the functions always include 

all parameters, but if a parameter is left out, the compiler adds in a 

default value to the function.

• An additional parameter can be passed that has bits set on or off for 

which parameters were included in the call and which need defaults. 

Then, the function itself can check to see which values were sent to it 

in the call.

• The function can be separately implemented for each combination of 

default values (see next section).

• The same function can have different entry points depending on 

which values are defaulted in.

We will show here how to do the last one of these. Let us say we have the following 

function definition:

int myfunc(int param1, int param2 = 3, int param3 = 5)

We can code this in assembly language by having multiple targets: myfunc will be 

the main entry point, myfunc_default_param3 will set up the third parameter for us, 

and myfunc_default_param2_param3 will set up both of them. Remember that the first 

parameter is stored in %rdi, the second parameter in %rsi, and the third parameter in %rdx.

myfunc_default_param2_param3:

    movq $3, %rsi

myfunc_default_param3:

    movq $5, %rdx

myfunc:

    # Main function here
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As you can see, the different endpoints are basically monkey patching the 

parameters to include the various default values.

16.6  Overloaded Functions
Some languages, such as C++, also implement what are called overloaded functions. 

This is where a single function name can be implemented in different ways by different 

parameters.

That is, we can have two functions, both called myfunc. Which one is chosen depends 

on the types (and number) of the parameters. One version might take an integer, and 

another version might take a floating-point variable.

This is usually done by name mangling. This means that the language will modify 

the name of the function internally to include the types of arguments. Then, function 

calls will choose which one to call and change the name of the function (again, 

internally) to specify which one they want to call.

There are a lot of C++ name-mangling rules, so we won’t get into them all. However, 

for simple functions, the following rules will get you pretty far:

 1. All mangled names begin with _Z.

 2. Next is the number of characters in the function name (6 for 

myfunc).

 3. Next is the function name itself (myfunc).

 4. Last is a letter for each argument type. l for a 32-bit integer, x for a 

64-bit integer, c for a character, d for a double, etc.

 5. The return value is not included in the function name.

So, the function long myfunc(long long a, long b) would be named _Z6myfuncxl.
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16.7  Exception Handling
Exception handling can be implemented in a number of ways, and we will simply show 

one that is conceptually simple to follow.

The problem with exceptions is that they can transfer control way outside of the 

scope of the immediate function or calling function. For instance, consider the following 

code:

void myfunc() {

    try {

        myfunc2();

        // DoMoreStuff

    } catch {

        // HandleException

    }

    // ContinueMyFunc

}

void myfunc2() {

    myfunc3();

}

void myfunc3() {

    throw_exception my_exception_code;

}

Here, throw_exception will transfer control not only back out to the calling 

function, func2, but all the way out to myfunc. Additionally, this is not even the return 

address for myfunc (which would go to DoMoreStuff), but to the exception handler in 

HandleException.

Additionally, each stack frame must be given the chance to “unwind.” That is, many 

times there are actions which must be taken for a function to clean up after itself, such as 

closing files, deallocating memory, etc. So, control has to be transferred far outside the 

current scope, but we also need to perform cleanup operations along the way.

A simple way to take care of this is to simply have the address of the exception 

handler be pushed onto the stack before making the function call. Every function 

will implement some type of exception handling, even if it doesn’t explicitly handle 

exceptions. If a function doesn’t catch exceptions and no cleanup is needed, it will 
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simply transfer control to the next cleanup on the list. If a function doesn’t catch 

exceptions but needs cleanup, it can do so before transferring to the next exception 

handler. Finally, if a function does catch the exception, then they can both clean up and 

do exception handling and not propagate the exception further.

The following is an implementation of this idea:

exception.s

.equ my_exception_code, 7 # Just picking a value at random

myfunc:

    enter $0, $0

    push $0  # Needed to keep the stack aligned

    push $myfunc_exceptionhandler

    call myfunc2

    # DoMoreStuff

myfunc_ContinueMyFunc:

    # Do more stuff here

    leave

    ret

myfunc_exceptionhandler:

    # HandleException - do any exception-handling code here

    # Go back to the code

    jmp myfunc_ContinueMyFunc

myfunc2:

    enter $0, $0

    pushq $0 # keep the stack aligned

    pushq $myfunc2_exceptionhandler

    call myfunc3

    leave

    ret
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myfunc2_exceptionhandler:

    # Nothing to do except go to the next handler

    leave           # restore %rsp/%rbp

    addq $8, %rsp   # Get rid of return address

    jmp *(%rsp)     # jump to exception handler

myfunc3:

    enter $0, $0

    # Throw

    movq $my_exception_code, %rax  # store exception code

    leave                          # restore %rsp/%rbp

    addq $8, %rsp                  # Get rid of return address

    jmp *(%rsp)                    # Jump to exception handler

    # What would have happened if we didn't throw the exception

    leave

    ret

We are pushing zero onto the stack because the stack is supposed to maintain a 

16-byte alignment. Then we are pushing the exception handler information for the 

function. A “throw,” then, consists of setting %rax to the exception information (here 

it is just a number) and then performing an alternate series of steps to return to the 

function, so that we return via the exception handler, not to the return address. The 

exception handler can either handle the exception and continue processing (as happens 

with myfunc), or it can propagate the error on up the chain (as happens with myfunc2). 

No exception handler was shown for myfunc3 both for brevity’s sake and because it is 

unneeded.

Note that this also makes it straightforward to implement finally clauses that do 

finalization without actually catching the exception. In myfunc2, any finalization could 

have been done before propagating the exception on to the next function in the call 

stack.
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16.8  Tail-Call Elimination
One interesting optimization that can be done in certain cases is known as tail-call 
elimination. Many programming languages encourage (or even force!) programmers 

to write programs recursively. This is usually fine, except that sometimes the recursion 

happens so many times that the program runs out of stack space!

To mitigate against overusage of stack space, programming languages often 

implement tail-call elimination. The idea behind this is that if the last thing that a 

function does is return the value of another function call (it doesn’t need to process 

that value or anything—just return it), then at the point of the call, the stack frame is 

actually not needed. The current stack frame can be discarded with a leave instruction, 

and then, rather than issuing a call instruction, a jmp instruction can be issued instead. 

This means that a return (ret) from the called function will not return control back to 

the present function, but to the preceding function! Since we were just going to keep the 

return value in %rax anyway, there was nothing else the present function needs to do, so 

there is no reason to return to the present function.

This not only eliminates waste in stack space usage, it also saves the processor a lot 

of time returning from the huge stack of recursive functions. If each tail call is just a jmp 

instead of a call, then the stack is not building up, and the return of the last call is just 

single return instruction.

Let’s consider a tail-call version of the factorial function. In this version, the current 

accumulated value of factorial is sent along with the current value. In pseudo-code, the 

function would look like this:

int factorial(int value) {

    return factorial_recursive(value, 1);

}

int factorial_recursive(int number, int value_so_far) {

    if(number == 1) {

        return value_so_far;

    }

    int curval = number * value_so_far;

    return factorial(number - 1, curval);

}
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This is a recursive implementation, but it doesn’t have to build up stack frames if the 

compiler implements tail-call elimination. The following is the assembly language that 

could be used to implement the preceding function using tail-call elimination. Notice 

that all tail recursive calls are implemented with a jmp rather than a call.

factorialtail.s

.globl factorial

.section .text

factorial:

    # No stack frame needed, just get ready to call factorial_internal

    # %rdi already has number,

    # value_so_far gets set to 1

    movq $1, %rsi

    # We can eliminate this as a tail call as well!

    jmp factorial_internal

factorial_internal:

    # No stack frame needed

    # %rdi has number

    # %rsi has value_so_far

    cmpq $1, %rdi

    je factorial_internal_completion

    # multiply number and value_so_far

    movq %rsi, %rax

    mulq %rdi

    # Next value

    decq %rdi         # number

    movq %rax, %rsi   # value_so_far

    # Tail call elimination

    jmp factorial_internal
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factorial_internal_completion:

    # This is the base case - return value_so_far

    movq %rsi, %rax

    ret

Remember, this only works if (a) the very last thing the function does is make a 

function call and (b) it returns exactly the value it received from this function call.

Interestingly, the technique doesn’t actually require that the call is a recursive call, 

though that is where it is most useful. As long as the call is at the end of the function, tail- 

call elimination can be applied.

Recursive programs are often thought of as easier to reason about than looping 

programs, because it is easier to write programs where all variables are only assigned 

once, and therefore you can easily see where the value comes from since there is only 

one line of code where the value is assigned. Historically, this technique was not viewed 

favorably because it was deemed inefficient due to having the overhead of function 

calls everywhere. However, when tail-call elimination is used, the resulting assembly 

language is nearly as efficient as if a simple loop were employed.

16.9  Reading Assembly Language Output from GCC
Many programming languages themselves support output to assembly language directly. 

The GNU Compiler Collection (GCC) will do this for you using the -S switch. If you want 

to see what assembly language the compiler generates for the file foo.c, you can run  

gcc -S foo.c, and it will generate a file called foo.s containing the assembly listing.

This is useful for a variety of reasons. First, it’s helpful when learning assembly 

language to learn what compilers are actually generating. This helps both learning 

assembly language and how the target language is implemented. Additionally, if you 

want to use assembly language to optimize something, it is sometimes easier to have the 

compiler have the first turn. Humans are good at inventing rules; computers are good 

at applying them. Therefore, if there are known rules for optimization, the compiler 

probably knows them and will apply them. Then, for non-rule-based optimizations, you 

can implement them yourself.
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The following is a simple program written in C:

example_compile.c

#include <stdio.h>

long squareme(long x) {

    return x * x;

}

long myval;

int main() {

    fprintf(stdout, "Enter a number: \n");

    fscanf(stdin, "%d", &myval);

    fprintf(stdout, "The square of %d is %d", myval, squareme(myval));

}

If it is compiled with gcc -S example_compile.c, it generates the following output 

on GCC 10.3.0 (some extraneous lines removed for readability):

example_compile.s

    .text

    .globl      squareme

    .type      squareme, @function

squareme:

.LFB0:

    .cfi_startproc

    pushq      %rbp

    .cfi_def_cfa_offset 16

    .cfi_offset 6, -16

    movq      %rsp, %rbp

      .cfi_def_cfa_register 6

    movq      %rdi, -8(%rbp)

    movq      -8(%rbp), %rax

    imulq      %rax, %rax

    popq      %rbp

    .cfi_def_cfa 7, 8

    ret
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    .cfi_endproc

.LFE0:

    .size      squareme, .-squareme

    .globl      myval

    .bss

    .align 8

    .type      myval, @object

    .size      myval, 8

myval:

    .zero      8

    .section      .rodata

.LC0:

    .string      "Enter a number: \n"

.LC1:

    .string      "%d"

.LC2:

    .string      "The square of %d is %d"

    .text

    .globl       main

    .type        main, @function

main:

.LFB1:

    .cfi_startproc

    pushq      %rbp

    .cfi_def_cfa_offset 16

    .cfi_offset 6, -16

    movq      %rsp, %rbp

    .cfi_def_cfa_register 6

    movq      stdout(%rip), %rax

    movq      %rax, %rcx

    movl      $17, %edx

    movl      $1, %esi

    movl      $.LC0, %edi

    call      fwrite

    movq      stdin(%rip), %rax
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    movl      $myval, %edx

    movl      $.LC1, %esi

    movq      %rax, %rdi

    movl      $0, %eax

    call      __isoc99_fscanf

    movq      myval(%rip), %rax

    movq      %rax, %rdi

    call      squareme

    movq      %rax, %rcx

    movq      myval(%rip), %rdx

    movq      stdout(%rip), %rax

    movl      $.LC2, %esi

    movq      %rax, %rdi

    movl      $0, %eax

    call      fprintf

    movl      $0, %eax

    popq      %rbp

    .cfi_def_cfa 7, 8

    ret

    .cfi_endproc

Some differences from our expectations appear here:

 1. Unsurprisingly, all of the data storage names were computer 

generated. Generally, the compiler introduces local values with 

the .L prefix.

 2. The compiler adds a lot of additional annotations to make sure 

that the assembler exactly matches what the compiler writers 

want.

 3. The specific assembler directives used are a little different than the 

ones we generally use when writing code ourselves. For example, it 

uses .text rather than .section .text as we typically do.

 4. The compiler often uses explicit pushing of values rather than the 

enter instruction. The reason for this is that in many processors, 

it is actually faster to execute multiple instructions than for the 

processor to execute the enter family of instructions.
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 5. The code generally prefers to use 32-bit addresses rather than  

64-bit. This is why it is loading string addresses into 32-bit 

registers rather than their 64-bit equivalents.

 6. The compiler can inline functions in certain circumstances. 

Note that the first fprintf actually gets converted into an fwrite 

function. This is because the compiler figured out that it could do 

this without causing issues and would avoid an extra function call.

In any case, it should be sufficiently close to what you have learned so far that you 

can follow the details closely.

 Exercises

 1. Write a short program in C which contains both a for loop and a 

function call.

 2. Take the program you just wrote, and now write an assembly 

language version of it.

 3. Compile the program with gcc -S to see how GCC translates your 

program into assembly language. How did that differ from your 

version?

 4. Compile the program with gcc -S with different optimization 

levels/options turned on (optimization levels are specified by  

 -OLEVEL where LEVEL is a number zero or greater). How does this 

affect the output?

 5. Write a C++ program. Try to predict the name mangling of your 

functions. Use gcc -S to see if you are correct.

 6. Write a program in another language GCC supports. Can you 

more or less predict the output?
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CHAPTER 17

Tracking Memory 
Allocations
Nearly every programming language has some features to track memory allocations. 

Some, like the C programming language, are primitive. In Chapter 14, we learned how to 

implement basic procedures for allocating and deallocating memory for a program and 

managing the amount of memory we requested from the kernel.

However, even with having functions to allocate and deallocate memory, there are 

still a lot of issues that programmers have when tracking memory. Trying to figure out 

when a piece of memory can be deallocated is tricky. If a program has lots of subsystems, 

and memory gets passed around, it is tough to tell when we are done with it. Simply 

providing functions to allocate and deallocate memory is literally the least we can do.

In this chapter, we will look at more advanced facilities of memory management.

17.1  Memory Pools
One way to keep track of memory is with memory pools. To understand the benefit of 

memory pools, think about a web service. Web services get a request, process a request, 

and then, basically, forget about the request. They don’t have to keep any of the request- 

specific data around while they wait for the next request. There is some data that they 

need to keep the server running, but none of the data that they worked with during the 

request really matters anymore.

In this type of environment, memory pools work really well. Memory pools are like 

multiple areas of memory from which you can request allocations and deallocations. 

Imagine segmenting out your memory so that not only do you request an amount of 

memory you want, you also request which memory pool you want it allocated from.

Why is this helpful?
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Go back to our web request example. During a request, you are going to allocate 

memory—maybe lots of it. Rather than having to manage all these pointers to be sure 

you free them all at the right time, what if you could just say, “Hey computer—free 

everything that I allocated for this request!” Memory pools allow you to do this.

Basically, you would create a memory pool and designate it as being for requests. 

Then, as requests come in, allocations would occur from that specific memory pool. 

Finally, when the request is finished being handled, all of the memory in that pool would 

be flushed at once.

The following is a modification to the allocator from Chapter 14 that allows a user to 

specify a pool number to allocate from and also provides a deallocate_pool function 

to deallocate all allocations from a particular pool.1 Basically, it has an additional field 

on each allocation which is the pool number that the allocation belongs to. Then, when 

deallocating a pool, the deallocator simply walks the list of memory allocations and 

deallocates each one that belongs to the pool.2

mempool.s

.globl allocate, deallocate, deallocate_pool

.section .data

memory_start:

    .quad 0

memory_end:

    .quad 0

.section .text

.equ HEADER_SIZE, 32 # Only need 24, but this is a 16-byte aligned value

.equ HDR_IN_USE_OFFSET, 0

.equ HDR_SIZE_OFFSET, 8

.equ HDR_POOL_OFFSET, 16

.equ BRK_SYSCALL, 12

1 Note that this code performs best when memory pool 0 is not used. This is because the pool 
number is reset to zero when deallocations occur, so that deallocate_pool will skip them.

2 While this uses a separate field for the memory pool, if you wanted, you could probably tweak 
the code so that HDR_IN_USE_OFFSET and HDR_POOL_OFFSET shared a quadword—that is, if it is 
zero, then it’s unallocated; if it is nonzero, it references the memory pool it belongs to.
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# Register usage:

#  - %r10 - memory pool #

#  - %rdx - size requested

#  - %rsi - pointer to current memory being examined

#  - %rcx - copy of memory_end

allocate_init:

    # Find the program break.

    movq $0, %rdi

    movq $BRK_SYSCALL, %rax

    syscall

    # The current break will be both the start and end of our memory

    movq %rax, memory_start

    movq %rax, memory_end

    jmp allocate_continue

allocate_move_break:

    # Old break is saved in %r8 to return to user

    movq %rcx, %r8

    # Calculate where we want the new break to be

    # (old break + size)

    movq %rcx, %rdi

    addq %rdx, %rdi

    # Save this value

    movq %rdi, memory_end

    # Tell Linux where the new break is

    movq $BRK_SYSCALL, %rax

    syscall

    # Address is in %r8 - mark size, availability, and pool

    movq $1, HDR_IN_USE_OFFSET(%r8)

    movq %rdx, HDR_SIZE_OFFSET(%r8)

    movq %r10, HDR_POOL_OFFSET(%r8)

    # Actual return value is beyond our header

    addq $HEADER_SIZE, %r8
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    movq %r8, %rax

    ret

    # This version of allocate has

    # two parameters - pool # and size

allocate:

    # Save the pool number int r10

    movq %rdi, %r10

    # Save the amount requested into %rdx

    movq %rsi, %rdx

    # Actual amount needed is actually larger

    addq $HEADER_SIZE, %rdx

    # If we haven't initialized, do so

    cmpq $0, memory_start

    je allocate_init

allocate_continue:

    movq memory_start, %rsi

    movq memory_end, %rcx

allocate_loop:

    # If we have reached the end of memory

    # we have to allocate new memory by

    # moving the break.

    cmpq %rsi, %rcx

    je allocate_move_break

    # is the next block available?

    cmpq $0, HDR_IN_USE_OFFSET(%rsi)

    jne try_next_block

    # is the next block big enough?

    cmpq %rdx, HDR_SIZE_OFFSET(%rsi)

    jb try_next_block

    # This block is great!

    # Mark it as unavailable

    movq $1, HDR_IN_USE_OFFSET(%rsi)
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    # Set the pool #

    movq %r10, HDR_POOL_OFFSET(%rsi)

    # Move beyond the header

    addq $HEADER_SIZE, %rsi

    # Return the value

    movq %rsi, %rax

    ret

try_next_block:

    # This block didn't work, move to the next one

    addq HDR_SIZE_OFFSET(%rsi), %rsi

    jmp allocate_loop

deallocate:

    # Free is simple - just mark the block as available

    movq $0, HDR_IN_USE_OFFSET - HEADER_SIZE(%rdi)

    movq $0, HDR_POOL_OFFSET - HEADER_SIZE(%rdi)

    ret

deallocate_pool:

    # %rdi has the pool number

    # Walk the allocations and deallocate

    # anything with the pool number

    movq memory_start, %rsi

    movq memory_end, %rcx

deallocate_pool_loop:

    cmpq %rsi, %rcx

    je deallocate_loop_complete

    cmpq %rdi, HDR_POOL_OFFSET(%rsi)

    je deallocate_from_pool

    addq HDR_SIZE_OFFSET(%rsi), %rsi

    jmp deallocate_pool_loop

deallocate_from_pool:

    movq $0, HDR_POOL_OFFSET(%rsi)

    movq $0, HDR_IN_USE_OFFSET(%rsi)
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    addq HDR_SIZE_OFFSET(%rsi), %rsi

    jmp deallocate_pool_loop

deallocate_loop_complete:

    ret

You can call this allocator like this:

int main() {

    // Get 400 bytes from pool 1

    char *a1 = allocate(1, 400);

    // Get 32 bytes from pool 2

    char *a2 = allocate(2, 32)

    // Get 80 bytes from  pool 2

    char *ae = allocate(2, 80);

    // Release all of pool 2

    deallocate_pool(2);

}

If more thought was given on how these pools were structured, the flushing 

event, rather than having to iterate through all allocations, could essentially happen 

instantaneously.

Memory pools are fairly rare phenomena in computer programming, but I thought 

they were worth a mention because they have very interesting properties. The Apache 

Portable Runtime uses memory pools for exactly the purpose outlined here—web 

request processing. However, they can be helpfully applied anytime you have many 

allocations which are aligned with a particular part of the life cycle of a program.

17.2  Reference Counting
Memory pools are nice, but the problem with them is that their usage is tied to fairly 

specific application styles and life cycles. Another, more general way to semiautomate 

memory management is with reference counting. In reference counting, instead of 

the programmer keeping track of whether or not they need to free memory, there is a 

counter (called the reference count or refcount) stored on the memory saying how 

many parts of the program are using the memory. When a part of the program starts 
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to use a piece of memory, or if the pointer to that memory gets stored somewhere, the 

program adds 1 to the counter. When that part of the program is done with that piece of 

memory (or the pointer goes away or points elsewhere), it subtracts 1 from the counter. 

When that counter drops to zero, the memory gets deallocated.

This adds a bit of overhead, as you will have to continually be calling the function 

to add/subtract from the counter and check for zero. Nonetheless, this simplifies the 

process greatly.

However, there are two big problems with reference counting:

 1. If there are circular reference (i.e., the memory refers to other 

memory, which has a pointer back to the memory itself), then the 

reference count gets stuck and can’t go to zero. This can’t really 

be managed by the system and has to be fixed by the user being 

smart about when they add to the reference count and when they 

don’t. In programming languages that support reference counting, 

there is usually an option for a pointer to be a weak reference (i.e., 

does not contribute to the reference count). However, this creates 

other problems, such as the fact that something that is being 

pointed to could in fact disappear.

 2. There are several edge cases when dealing with reference 

counting and knowing who is responsible for what is very 

important. For example, when an object is returned from a 

function, what should its reference count be? If it were zero, 

it should already be deallocated. If it is one, then who is 

responsible for deallocating it? What if the result is ignored by the 

programmer?

The programming languages most famous for reference counting are Objective-C 

and Swift. Interestingly, because of the intricacies of how they operate, they both have 

different answers to the second question. In Objective-C, originally, programmers had 

to maintain reference counts themselves, using the functions retain (increase the 

reference count) and release (decrease the reference count and deallocate if needed). 

This meant that it was not unusual for a programmer to ignore a return value from a 

function. To prevent programmers from having to explicitly release return values from 

functions, a function known as autorelease was established which meant, essentially, 

“release this at a later time.” Then, if programmers wanted to ignore a value, they could, 
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and it would be cleaned up later. They only had to interact with it if they wanted to keep 

in (in which case they would issue a retain on it).

Swift, however, does the opposite. Since the compiler is in charge of retaining and 

releasing, it simplifies things by having returned values always have a reference count of 1,  

and the calling function is responsible for releasing it if they don’t want the value.

The following code is a modification of the allocator in Chapter 14. Instead of just 

having a flag telling whether the memory is in use, this is now a counter which tells how 

many times the memory has been retained. The value starts at 1 when the memory is 

allocated with allocate. The retain function will add one to the reference count. The 

deallocate function has been removed in favor of release, which decrements the 

reference count and checks to see if it is ready to deallocate.

Since we are not autoreleasing, we are following the semantics of Swift, where 

returned values are assumed to have a reference count, and the calling functions have to 

release them when they are no longer being used.

Interestingly, we actually can use the exact same allocate/deallocate code 

from Chapter 14. What we will do is transform the “in use” quadword from a flag to 

a count, which means that allocate already sets that to what we want it to be. All we 

need are two short functions for adjusting the reference count. Additionally, because 

“deallocating” simply means marking the “in use” quadword as a zero, there is nothing 

additional we need to do because that is the same thing that happens when the reference 

count goes to zero!

The following code gives two short functions that add reference counting to our 

memory management system:

refcount.s

.globl retain, release

.section .text

.equ REFCOUNT_OFFSET, -16

retain:

    incq REFCOUNT_OFFSET(%rdi)

    ret

release:

    decq REFCOUNT_OFFSET(%rdi)

    ret
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The following code will exercise the reference count functionality:

int main() {

    char *a = allocate(500);

    retain(a);

    retain(a);

    release(a);

    char *b = allocate(300); // New allocation

    retain(a);

    release(a);

    release(a);

    char *c = allocate(300); // New allocation

    release(a); // Object is deallocated here

    char *d = allocate(300); // Re-uses space from a

}

Note that when writing in assembly language, this can be done even faster. While it 

causes more tight coupling, if the programmer knows the way the reference counting 

system works, the programmer can avoid the function call altogether and simply 

increment/decrement the reference count in a single instruction, no matter where it is! 

No more trying to shuffle things into %rdi and taking care to save your registers. You can 

literally do this by incrementing the correct offset (-16 in our case) of your pointer.

17.3  Garbage Collection
The ultimate in automatic memory management is garbage collection. In garbage 

collection, the programmer ultimately doesn’t have to care at all about memory 

management. They can simply allocate and store. The rest is taken care of by the system.

The system goes through memory periodically and checks to see if there is anything 

that is unreferenced. Anything unreferenced then gets automatically freed.

Garbage collection even avoids the problem of circular references. The garbage 

collector starts with a set of “base memory regions” and works out from there. Anything 

unreachable from those base memory regions is assumed to be garbage. So, even if two 

things point to each other, it doesn’t matter because if there isn’t a reference to one of 

them reachable from the starting set of memory regions, then they aren’t reachable by 

code.
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This sounds like a complicated process, and, in fact, it can be, but there are also 

easier ways to do it if you allow for some assumptions.

The assumptions for our garbage collector are as follows:

• We will assume that every pointer is stored on an 8-byte boundary.

• We will assume that when the garbage collector is called, there are no 

pointers in registers that aren’t also stored somewhere as well.

• We will establish the .data and .bss sections, as well as the stack, as 

being our “base memory” regions.

The garbage collection process will look like this:

 1. We will walk through all allocations and mark them all as free.

 2. We will then walk these memory regions looking for anything that 

“looks like” a pointer (i.e., the value could be pointing somewhere 

on the heap).

 3. For any pointer-like value that we find, we will push it onto the 

stack.

 4. We will then go through the stack, and for each pointer-like object, 

we will

 (a). Walk through the allocations to see if it is a real pointer.

 (b). If it is a real pointer, we will check to see if it is marked as in use.

 (c). If it is already marked as in use, we will skip it and go on to the next value 

in the stack.

 (d). Otherwise, we will mark it as in use and go through each quadword in this 

region looking for pointer-like values and adding them to the stack.

 5. Once we are all the way through the stack of values, our job is 

done.

This is a “conservative” garbage collector, because it is treating anything that could 

be a pointer as if it were a real pointer. If we were in charge of a programming language, 

we could make the garbage collector only care about real pointers. In our case, we are 

just looking for values that could be pointers into the heap.
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Because this chapter is already running long, and this code is longer than most, the 

code is available in Appendix J. It’s more complicated than other code in this book, but it 

is probably less complicated than you might have expected garbage collection to be!

To use the garbage collector, just gc_allocate freely, and then periodically call gc_

scan (no parameters needed) to actually perform the garbage collection.

17.4  Adding Finalizers
When using automatic memory management, sometimes you would like to be notified 

when memory gets reclaimed. Perhaps you want to know when something is no longer 

used. Perhaps the memory is a file structure or something that contains a file descriptor 

that needs to be closed or some other important piece of information that has to be dealt 

with before the data structure goes away.

This requires a finalizer. A finalizer is basically a function that is run right before 

memory is deallocated. All of these schemes can have finalizers added to them, though 

the complexity of doing so varies with the approach.

We won’t implement them here, because it actually takes quite a rewrite to add 

them. Essentially, however, you can add a finalizer by

 1. Reserving a spot in the memory header to store a finalizer 

function

 2. Having a function call to set the finalizer

 3. Executing the finalizer when the object is destroyed

This is not incredibly hard to do with the reference counting. We just need to add 

more fields to the memory header. For the garbage collection, however, we would need 

to add more states so that we knew which memory allocations switched from allocated 

to deallocated.
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 Exercises

 1. Think more about the memory pool allocator. Rather than using 

an integer to identify the pool, create functions to allocate and 

deallocate entire pools, giving a user a pointer to the pool upon 

creation from which to allocate their data.

 2. Think about the memory pool allocator. How might you modify 

this so that memory pools are flushed without having to iterate 

through every allocation? Note that it will require restructuring 

the code and data quite a bit.

 3. Take one of the allocators from this chapter and add a finalizer 

system to it.
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CHAPTER 18

Object-Oriented 
Programming
This chapter takes a look at object-oriented programming from an assembly language 

perspective. Object-oriented programming is most useful when you are a programmer 

writing libraries for other programmers to use. Since we have programmers building 

things for programmers, in this chapter, the term “library programmer” will be used to 

refer to the programmer who is creating the data structures, functions, and objects, and 

the term “application programmer” will be used to refer to the programmer who is using 

those things. Oftentimes, the library programmer and the application programmer are 

the same person, but nonetheless, the roles are distinct.

In the programming we have done so far, we have emphasized the importance 

of all parts of your program knowing and understanding the layout of data on your 

computer. Since computer memory consists entirely of numbers, we have to know what 

the numbers mean in order to use them. However, this makes programming a lot less 

flexible.

What if there was a way to program where the application programmer didn’t have 

to pay as close of attention to the specific layout of each data structure, but could operate 

on the data in a way that was more focused on functionality?

Object-oriented programming is a style of programming and programming 

languages which allow you to treat data structures by their functionality rather than by 

their data layout.

Object-oriented programming is typically defined by three key ideas: encapsulation, 

polymorphism, and inheritance.
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18.1  Encapsulation
Essentially, the library programmer defines functions, called methods, around the data 

structure to control how the data structure is manipulated and accessed. Application 

programmers, rather than accessing the data structure directly, use the methods instead. 

This allows a level of indirection and encapsulation which shields the application 

programmer from having to know too much about the internals of the data structure.

We’ve dealt with encapsulation before without mentioning it. The FILE structure 

from Chapter 12 exhibits features of encapsulation. The fopen function returned a 

pointer to the FILE structure, but we never actually knew what was in it. We only knew 

the functions that took it as a parameter. These functions essentially act as gateways to 

the structure, ensuring that we only utilize the FILE structure in legitimate ways. We call 

the function and the library manages any actual changes required to the data.

This allows a level of safety for the application programmer using the function as 

well as a means of compatibility for future changes. Since the application programmer’s 

usage of FILE is entirely through functions, the library programmer can modify the 

implementation easily without causing problems for the application programmer. The 

type of record (the data layout plus the methods defined around it) is known as the class 

of the object. An instance of the data structure itself is known as the object.

An object’s life cycle usually includes three types of functions: constructors, 

methods, and destructors. A constructor is what build your object. It allocates data, sets 

initial values, and hands back to the program a pointer to the underlying record. The 

fopen function is essentially a constructor. It allocates data for the FILE structure, sets it 

up, and hands back a pointer to it.

Methods do all of the “main” tasks of the object. Most of the functionality of the 

object is defined in various methods. We normally write methods such that the first 

parameter is a pointer to the object that the method is written for. fprintf is a good 

example of a method. The first parameter is a pointer to the FILE structure. The function 

encapsulates and abstracts the operation of the FILE structure. You don’t need to know 

any of the underlying system calls to use the method or even what the data inside the 

FILE pointer looks like. The application programmer simply gives fprintf the pointer, 

and fprintf knows the right way to deal with it.

Finally, a destructor takes care of getting rid of your object. For some objects, this just 

deallocates the memory. For other objects, this is more involved. The destructor for the 

FILE structure is the fclose function. It not only deallocates the memory, it also tells the 

operating system that we are done with the file and closes it out.
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The following is how we might imagine these functions being used together (this is 

not a real programming language, just an example of what one might look like):

function main() {

    File *myfile = File.fopen("myfilename.txt", "w"); // Constructor

    myfile.fprintf("Hello there!\n");                 // Methods

    myfile.fprintf("Hello again!\n");

}

A few things to note. First of all, the constructor is usually defined on the class itself. 

Since there isn’t an object available yet, constructors are often defined as class_name.

constructor_name. However, they always yield a pointer to a data structure of the right 

type for the class.

Second, note that the destructor wasn’t explicitly called. This is true of many 

object-oriented programming languages. The destructor is called implicitly when the 

object is garbage collected or goes out of scope.

Finally, notice how the syntax is object_variable.method_name. Under the covers, 

this is just a function call where the object is merely the first parameter (though, as we 

will see shortly, there is a bit more to it than that). It is written this way (among other 

reasons) to emphasize that the fprintf method is defined on the myfile object. In other 

words, fprintf has a special relationship with (and special access to) the FILE data 

structure.

18.2  Polymorphism
Encapsulation helps us think about and structure our code more clearly. However, it is 

just as much a style as it is a technology. Essentially, it says, “The library programmer 

knows the data structures, the application programmer should just use the functions that 

the library programmer defines and not worry too much how it is implemented.”

Polymorphism, however, does the real magic of object-oriented programming. 

Polymorphism means that when I’m writing functions or methods, I don’t even have to 

be worried too much about the specific types of objects that are passed in as parameters. 

What I care about is the behaviors they support more than their specific types.

Let’s look at an example to see what I mean. This is a fictitious programming 

language, so don’t imagine that this will actually build a working program anywhere.
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interface Animal {

    function speak();

    function eat();

}

class Dog implements Animal {

    method speak() {

        stdout.fprintf("Ruff, ruff\n");

    }

    method eat() {

        stdout.fprintf("I love dog biscuits\n");

    }

    method fetch() {

        stdout.fprintf("I love to play fetch\n");

    }

}

class Cat implements Animal {

    method speak() {

        stdout.fprintf("Meow\n");

    }

    method eat() {

        stdout.fprintf("Yum, yum fish\n");

    }

    method playWithString() {

        stdout.fprintf("Ball of string, Yay!\n")

    }

}

function doThings(Animal *a) {

    a.speak();

    a.eat();

    a.speak();

    a.speak();

}
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function main() {

    c = Cat.new();

    d = Dog.new();

    doThings(c);

    doThings(d);

}

In this example, we define two classes—a Cat class and a Dog class. These classes 

both implement the Animal interface. In object-oriented terms, an interface is a set of 

methods which may be supported by one or more classes.

What this means is that I can define functions which don’t care what specific data 

structure they receive. They only care what interfaces those data structures support. In 

the example, the doThings function took any object that supports the Animal interface. 

The program calls it with a Dog object one time and a Cat object another time. In each 

case, the code will do the appropriate functions for that object!

What this allows for is the ability of programmers to build highly extensible 

programs. By defining standard interfaces, they can write code which allows them 

to extend by adding additional classes that implement those interfaces. The main 

application code does not need to be changed, because the application code merely 

works with the interfaces. Adding new types of objects typically requires relatively little 

programming changes at the edges.

So how is this implemented?

Polymorphism is usually implemented by simply having a record for each interface 

that each class implements. This record, known as a vtable, is simply a list of pointers to 

each function in the interface that the class implements.

Then, when passing an object to a function that operates on an interface, both the 

pointer to the object and a pointer to the vtable are passed. Since the interface is known 

ahead of time, the offsets into the vtable are also known, and the function simply looks 

up the function it wants to call on the vtable. This combination of two pointers—an 

object pointer and a vtable pointer—is often referred to as a fat pointer.

The following is our cat/dog example in assembly language. There’s quite a bit of 

code for such a simple example, but hopefully, you can see how flexible this makes your 

code, especially if all the complexity is being handled in a programming language by the 

compiler rather than trying to do it by hand.
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First, let’s look at how the objects themselves are defined. Each one will allocate 

memory, because, in theory, these would have data behind them. Ours don’t, but 

that’s okay. Also, for brevity, the unused cat- and dog-specific functions (fetch and 

playWithString) were removed.

Here is the code for the Cat class:

vtable_cat.s

## Cat Class

.globl cat_new, cat_eat, cat_speak, cat_destroy

.section .data

speak_text:

    .ascii "Meow\n\0"

eat_text:

    .ascii "Yum, yum fish\n\0"

play_text:

     .ascii "Ball of string, Yay!\n\0"

.section .text

.equ CAT_SIZE, 64

cat_new:

    enter $0, $0

    movq $CAT_SIZE, %rdi

    call malloc

    leave

    ret

cat_speak:

    enter $0, $0

    movq stdout, %rdi

    movq $speak_text, %rsi

    call fprintf

    leave

    ret
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cat_eat:

    enter $0, $0

    movq stdout, %rdi

    movq $eat_text, %rsi

    call fprintf

    leave

    ret

cat_destroy:

    enter $0, $0

    # %rdi already has the address

    call free

    leave

    ret

Notice that the functions are fairly straightforward. All of them (except the 

constructor) simply take a pointer to the object as its first parameter. In the current 

implementation, since the method knows the complete type information of the object, 

we don’t need vtable information. We will see the shortcomings of this in the section on 

inheritance. However, this is the method used in languages such as Go which support 

polymorphism but not inheritance.

The code for the Dog class is very similar:

vtable_dog.s

## Dog Class

.globl dog_new, dog_eat, dog_speak, dog_destroy

.section .data

speak_text:

    .ascii "Ruff, ruff\n\0"

eat_text:

    .ascii "I love dog biscuits\n\0"

.section .text

.equ DOG_SIZE, 32

dog_new:

    enter $0, $0

    movq $DOG_SIZE, %rdi
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    call malloc

    leave

    ret

dog_speak:

    enter $0, $0

    movq stdout, %rdi

    movq $speak_text, %rsi

    call fprintf

    leave

    ret

dog_eat:

    enter $0, $0

    movq stdout, %rdi

    movq $eat_text, %rsi

    call fprintf

    leave

    ret

dog_destroy:

    enter $0, $0

    # %rdi already has the address

    call free

    leave

    ret

Next, we will define the interface, which is essentially just defining how the interface 

vtable looks with each set of methods. Note that the vtable is literally just a list of 

functions which tell how the Animal interface is defined for that object. One vtable is 

needed for each class for each interface it implements.

vtable_animal.s

.globl VTABLE_ANIMAL_SPEAK_OFFSET, VTABLE_ANIMAL_EAT_OFFSET

.globl dog_vtable_animal

.globl cat_vtable_animal

.equ VTABLE_ANIMAL_SPEAK_OFFSET, 0
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.equ VTABLE_ANIMAL_EAT_OFFSET, 8

dog_vtable_animal:

    .quad dog_speak

    .quad dog_eat

cat_vtable_animal:

    .quad cat_speak

    .quad cat_eat

Next, we will look at the doThings function which uses the vtables. Notice how the 

first parameter to doThings is the object and the second parameter is the vtable. This 

tells the function both where the object exists in memory (the pointer to the object) 

and how it is utilized (the pointer to the vtable). Then, all the function calls are made as 

indirect function calls, made as offsets into the vtable.

Here is the code:

vtable_dothings.s

.globl doThings

.section .text

doThings:

    .equ LCL_ANIMAL_OBJ_OFFSET, -8

    .equ LCL_ANIMAL_VTABLE_OFFSET, -16

    enter $16, $0

    movq %rdi, LCL_ANIMAL_OBJ_OFFSET(%rbp)

    movq %rsi, LCL_ANIMAL_VTABLE_OFFSET(%rbp)

    # %rdi already contains the object

    call *VTABLE_ANIMAL_SPEAK_OFFSET(%rsi)

    movq LCL_ANIMAL_OBJ_OFFSET(%rbp), %rdi

    movq LCL_ANIMAL_VTABLE_OFFSET(%rbp), %rsi

    call *VTABLE_ANIMAL_EAT_OFFSET(%rsi)

    movq LCL_ANIMAL_OBJ_OFFSET(%rbp), %rdi

    movq LCL_ANIMAL_VTABLE_OFFSET(%rbp), %rsi

    call *VTABLE_ANIMAL_SPEAK_OFFSET(%rsi)

    movq LCL_ANIMAL_OBJ_OFFSET(%rbp), %rdi
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    movq LCL_ANIMAL_VTABLE_OFFSET(%rbp), %rsi

    call *VTABLE_ANIMAL_SPEAK_OFFSET(%rsi)

    leave

    ret

As you can see, the vtable is stored in %rsi. If we want to call the eat function, we use 

the symbol VTABLE_ANIMAL_EAT_OFFSET to know where that function lives. Therefore, 

VTABLE_ANIMAL_EAT_OFFSET(%rsi) contains the address of the function that will be 

executed. We use the * with the call instruction to let the CPU know that VTABLE_

ANIMAL_EAT_OFFSET(%rsi) is not where it should jump to, but rather the memory 

location that holds the address where the jump should go.

Finally, we have our main function, which constructs the objects, calls doThings 

(passing in both the object and the correct vtable), and then destroys the objects:

vtable_main.s

.globl main

.section .text

main:

    .equ LCL_CAT, -8

    .equ LCL_DOG, -16

    enter $16, $0

    # Construct a cat

    call cat_new

    movq %rax, LCL_CAT(%rbp)

    # Construct a dog

    call dog_new

    movq %rax, LCL_DOG(%rbp)

    movq LCL_CAT(%rbp), %rdi        # Object

    movq $cat_vtable_animal, %rsi   # VTable

    call doThings

    movq LCL_DOG(%rbp), %rdi        # Object

    movq $dog_vtable_animal, %rsi   # VTable

    call doThings
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    # Destructors

    movq LCL_CAT(%rbp), %rdi

    call cat_destroy

    movq LCL_DOG(%rbp), %rdi

    call dog_destroy

    leave

    ret

To build these together, just do the following (all on one line):

gcc -static -o vtable vtable_main.s

    vtable_dothings.s vtable_animal.s

    vtable_dog.s vtable_cat.s

Then, to run it, just do ./vtable.

18.3  Inheritance
Let us say that we had a cat that made a different noise than “meow.” In object-oriented 

programming, this is usually handled through inheritance. Inheritance allows you to 

define new classes that are essentially identical to the original class, but may add or 

replace existing methods and can add data fields.

This has many implications in how the object system works. For a simple case, let us 

look at a class called ScreechyCat, which, rather than saying, “Meow,” says, “Screech!” 

Inheritance allows us to only code the methods that changed from the Cat class. The 

methods that are the same don’t need to be reimplemented. The class that provides 

methods is known as the superclass (or base class), and the class that inherits methods 

is known as the subclass (or derived class).

Here is the code:

vtable_screechy.s

## ScreechyCat Class

.globl screechy_cat_new, screechy_cat_speak, screechy_cat_destroy
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.section .data

speak_text:

    .ascii "Screech!\n\0"

.section .text

.equ SCREECHY_CAT_SIZE, 128

screechy_cat_new:

    enter $0, $0

    movq $SCREECHY_CAT_SIZE, %rdi

    call malloc

    leave

    ret

screechy_cat_speak:

    enter $0, $0

    movq stdout, %rdi

    movq $speak_text, %rsi

    call fprintf

    leave

    ret

screechy_cat_destroy:

    enter $0, $0

    call free

    leave

    ret

Two things to note:

 1. We allocated more memory than the Cat class. We can allocate 

the same amount or more, but not less, because the individual 

methods that are inherited from Cat think they know what the 

layout of the data is. Therefore, while more fields can be added 

(which the original methods would then ignore because they 

aren’t aware of them), the layout of the base class cannot be 

changed.
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 2. We didn’t implement an eat method for ScreechyCat because it is 

inheriting that method. We could make this more clear by adding 

in a constant, such as .equ screechy_cat_eat, cat_eat. This 

would make it easier to remember, but isn’t strictly required.

Next, for the vtable, the vtable for Animal for the ScreechyCat class looks like this:

vtable_screechy_animal.s

screechy_cat_vtable_animal:

    .quad screechy_cat_speak

    .quad cat_eat

Notice that since the eat method is the same for both classes, the cat_eat address is 

placed directly into the vtable. Object-oriented programming means that the functions 

that aren’t overridden are copied directly into the vtable.

Now, the problem with our implementation mechanism is that if a method is called 

from a base class to an overridden method in the same class, there is not enough data to 

find the overridden method. Instead, the base class (non-overridden) method would be 

called.

In order to support that sort of behavior, a vtable is created for each class containing 

all of its methods, and this is sent with every call to methods in the class. Then, all calls 

(including calls to other functions within the same class) are called through the vtable.

This requires a significant rewrite of our system and so isn’t shown here.

18.4  Runtime Type Information
Oftentimes, programs need additional information about the objects that they are 

working with. The program may need to know what specific class it belongs to, what 

interfaces it supports, or other details. This is known as runtime type information, and 

this is a common facility provided by most object-oriented languages.

The way that runtime type information is implemented is often by adding either a 

pointer to this data as the first field of an object (so that it is easily findable even if you 

don’t know the type of object) or by having a function that retrieves this information be 

the first entry in every vtable record.
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This runtime type data for a particular class is often known as a class’s metaclass. 

Sometimes metaclasses are just structs with some functions defined on them, and other 

times they are implemented as full-blown classes themselves, themselves having a 

metaclass and vtables.

18.5  Duck Typing
There is another way of implementing object-oriented programming which allows for 

“duck typing.” Duck typing comes from the old saying, “if it walks like a duck and talks 

like a duck, it’s a duck.” In other words, rather than having types and interfaces, you are 

allowed to attempt to call any method name on any object at all.

In this mechanism, instead of knowing exactly where the entry for the function of 

interest is, your code merely has an identifier for the function. That is, each function 

name resolves to a specific number. The object stores all of its method pointers as 

identifier/pointer pairs. Then, instead of doing a lookup on a vtable for the function, 

the code walks the list of functions, looking for a matching identifier. When it finds a 

matching identifier, that is the function it calls.

This requires more code for every function call, because each call requires a search 

through the list of functions. In some languages, this occurs in multiple stages—one for 

each level of superclass. Essentially, the present class is searched for implementations. 

Then, if not found, the superclass is then searched, then that class’s superclass, and so forth.

In some languages, if no method is found, an opportunity is given to the class to 

create one at runtime. This allows for things such as autocreating database access 

methods based on the fields present in the database.

18.6  General Considerations
In all, object-oriented programming allows programmers to implement software in a highly 

dynamic way, separating out functionality from implementation. This tends to be tedious 

when hand-coded in assembly language. However, when produced from a programming 

language, this leads to flexible programs which are easy to write, read, and understand.
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Therefore, assembly language programmers are much less likely to write in an 

object-oriented fashion. However, building an object-oriented programming language 

requires extensive knowledge of assembly language, even if the compiler is what 

ultimately generates it.

 Exercises

 1. Create a Triangle and Rectangle class, each of which hold 

the base and height of the object. Then create a method called 

findArea which calculates the area of each. Create a Shape 

interface which has this method, and encode a vtable for it.

 2. Reimplement the Cat and Dog classes using duck typing. This will 

require assigning a unique number to represent each method 

name. Create a function called call_method which takes the 

object and the method number and looks up the function for the 

object and calls it. This will require having the first field of the 

object be a pointer to this method lookup table.
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CHAPTER 19

Conclusion and 
Acknowledgments
My goal for this book was to demystify what happens in computer programming. I think 

many people—even professional computer programmers—sometimes forget what is 

really happening under the hood. If you know assembly language, however, you can 

see how what you are doing in a high-level language is getting mapped onto the core 

constructs of assembly language. When a programming language implements a new 

feature, you can better understand both the feature itself and its possible limitations, 

because you can better imagine how it was implemented.

This is what assembly language programming has done for me, and I hope it does 

the same for you.

In my day job, I switch around between a lot of different languages. On a regular 

basis, I will program in Go, Ruby, Kotlin, Swift, Python, and JavaScript. These are all very 

different languages. However, knowing assembly language helps me understand their 

similarities and differences in a more visceral way.

Before I go, I want to say thanks to a lot of people who helped bring this book to 

fruition. First, I would like to thank my dad, who initially taught me to program when 

I was very young. He bought the family a TI-99/4A computer and taught me the basics 

of programming. To get a sense of how old this is, the computer did not have either a 

hard drive or a floppy drive, but actually made sounds that were captured by a cassette 

tape recorder to save and load files and programs (not kidding!). Second, I would like to 

thank my wife, who has always encouraged and supported me and didn’t seem to mind 

too much when I was writing instead of doing something more productive around the 

house.

I would also like to thank everyone who reviewed this book ahead of time, especially 

Paul Cohen and Brent Shambaugh for their thorough reviews. I also want to thank 

Nathan Bartlett, Tavo Soto, Jonathan Ruggles, Steven Dodson, Lawrence Kincheloe, 
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Alex Ayon, and David Bartlett for reading early versions of this manuscript and 

providing valuable comments. I want to thank Eric Holloway for making several helpful 

suggestions which contributed to this book. Finally, I want to thank Bill Parker and 

Randall Hyde, whose early books on Apple II assembly language (Intermediate Apple 

and How to Program the Apple II Using 6502 Assembly Language) first got me started 

programming in assembly language as a teenager.
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 APPENDIX A

Getting Set Up with Docker
Docker is a tool that allows you to run numerous containers on your system at the 

same time. A container is similar to a virtual machine running inside your computer, 

but without most of the overhead of a full virtual machine. Docker also allows you to 

quickly and easily download third-party machine images and run them locally on your 

computer. Even on a Mac or Windows computer, you can run Linux images from Docker. 

The only requirement is that since Docker is not a true virtual machine, your computer 

must have an x86-64 processor. If you are running 64-bit Windows or any version of 

MacOS that’s at least as recent as Catalina (10.15), you have the hardware you need to 

run the code in this book under Docker. You can also do this under Linux as well, though 

it is hardly necessary as Linux should already have all the tools you need.

A full discussion of Docker is outside the scope of this appendix, but there are plenty 

of resources available for learning about it. Here, we will only include the bare minimum 

to get you up and running.

Docker containers are essentially command line only. If you are not familiar with the 

command line, please refer to Appendix B.

You can edit files inside a Docker container, but you are essentially limited to using 

command line tools (again, see Appendix B). Additionally, the Docker container stops 

as soon as you exit the container. Finding the old, running container and restarting it is 

possible, but the details of that are outside the scope of this appendix. Therefore, what 

we are going to focus on is running a Docker container, but having the data files live on 

your host computer on a directory that is shared with the container. This way, all of the 

changes will be on your main computer, will be available to you on any container, and 

you can edit them from your host computer with your favorite editor. Changes will be 

immediately available within the Docker container for you.

https://doi.org/10.1007/978-1-4842-7437-8_20#DOI


254

I have built a Docker image specifically for this book to make it really easy to get 

started. Assuming that Docker is installed and running successfully on your computer, to 

get the image up and running, just do the following steps:

 1. Choose a directory on your hard drive to store your code.

 2. Go into the command line on your own machine (this will be 

known as the “host” machine).

 3. On the command line, go to the directory you chose in step 1.

 4. If you are on a Mac or Linux computer, run the following 

command (all on one line):

docker run -it --rm

--mount "type=bind,src=`pwd`,target=/my-code"

johnnyb61820/linux–assembly

Be sure that pwd is wrapped in backticks (`), not single quotes, as this tells the 

computer to run the command pwd and put the result in place. If you are on a Windows 

computer using the traditional command prompt, instead of `pwd`, you will want to put 

%cd% (without backticks). It will look like this:

docker run -it --rm

--mount "type=bind,src=%cd%,target=/my-code"

johnnyb61820/linux–assembly

If you are using Windows PowerShell, you need to replace icode ̀pwd̀ with $pwd 

(again, without backticks). It will look like this:

docker run -it --rm

--mount "type=bind,src=$pwd,target=/my-code"

johnnyb61820/linux–assembly

If you don’t know if you are on the traditional command prompt or PowerShell, then 

you should assume you are using the traditional command prompt.

The first time you run this, it will download the given image if needed (this can take a 

while, depending on your connection speed). After the download is finished, it will give 

you an interactive Linux terminal in a new container that is outfitted with all of the tools 

you need. In the container, the directory will be called /my-code, but this will actually 

have the directory from your host computer mounted in. Any changes either on the 
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container or on the host will be immediately reflected on the other side, because you are 

sharing the directory between them.

The parts of this command line are fairly straightforward. docker run tells Docker 

to run a new container. The –it flag will allow the Docker instance to act as a console. 

The --rm flag tells Docker that when you exit the container to delete it.1 The --mount 

flag and its arguments tell Docker to mount a directory from the host machine on 

the new container. We are using a bind mount which makes a directory from the host 

machine available to the container. The source on the host machine is simply the current 

working directory (which is what `pwd` discovers or, on Windows, what %cd% means). 

It is set to mount the directory onto the /my-code directory on the host machine, which 

is the directory that the container is set to start you in. This means that, after starting 

the container, you will be in the /my-code directory, but it will have all the same files 

as the directory you were in on your host computer. Essentially, it will be like nothing 

happened except that now you are on a Linux machine with the Linux developer 

toolchain available to you. The final argument, johnnyb61820/linux-assembly, is 

the image you want to run. If this is your first time running the command, Docker will 

download the image for you and then run it. From that moment on, you will have the 

image on your computer, and Docker will not need to download it again.

To verify that you are running inside the container, run as --version. This should 

print information about the tool (the GNU assembler), including the system it was built 

to target. It should include some text about the target being x86_64-linux-gnu. If it says 

that the command isn’t found or that the target is x86_64-apple-darwin, then you are 

not inside the container.

1 This sounds more destructive than it really is. Remember, all of your files are actually stored on 
the host machine, so this simply keeps stopped containers from building up on your system. Of 
course, it isn’t really harmful to leave stopped containers around as they utilize practically zero 
resources. Each container shares its base image files, so running new containers doesn’t take up 
any significant disk space (just a few kilobytes for overhead), and if they are stopped, then they 
don’t take up any memory or processing power.
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 APPENDIX B

The Command Line
The command line is one of the most useful tools for a programmer in the long run, 
but it is one that is tucked and hidden away from ordinary users. With the command 
line, instead of pointing and clicking to tell the computer what to do, you type  
commands that the computer reads and then runs. For the most part, each command 
is actually its own tiny (or not so tiny) program that does just one job for you. It is like 
a mini programming language that executes as you type each line.

 B.1 Why Use the Command Line
It may sound a little scary, but there was a time not so long ago when everyone accessed 

their computer through the command line. Everybody from salespeople to secretaries to 

managers to programmers. In the days before Mac and Windows, the command line was 

how everybody worked with their computers.

Today, almost no one even knows what the command line is. Operating system 

developers have buried it far in the dusty corners of the computer. Nonetheless, for a 

computer programmer, having a basic comfort level with the command line is essential. 

You can think of the command line as an unfiltered dialog between you and the 

computer. Pretty much all of the graphical tools associated with modern computers are 

there to filter your dialog with your computer. The menus and buttons are there to limit 

what you can do. For ordinary users, this limitation is great. It prevents the user from 

doing the wrong thing. But, for the programmer, the effect is reversed. Ultimately, the 

entire reason to program computers in the first place is because you want the computer 

to do something that the original creators of the computer didn’t expect. And, to do that, 

such limitations get in your way rather than help you forward.

Additionally, in a web-oriented world, the command line gives you the most 

straightforward access to remote computers. While we won’t cover remotely logging 

into computers here, I can tell you that knowing the command line is essential for 

administering and debugging computers remotely.
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For this book, there is another, more practical reason to use the command line. 

Programs that run on the command line are much easier to write than graphical 

programs. When writing graphical programs, you have to setup menus, position icons, 

etc. Command line programs don’t need any of that. In fact, your first program will only 

be three instructions long—hardly enough to get a windowed application even up and 

running.

In any case, this book assumes at least a passing familiarity with the command line. 

If you have never used the command line before, this appendix is meant to help get you 

started. There are, unfortunately, some differences between the command line on all of 

the platforms—Mac, Windows, and Linux—though thankfully the differences between 

Mac and Linux are hardly noticeable.

 B.2 Starting the Command Line
As mentioned, the command line is pretty well buried on most computers. Here is how 

to start it one each platform:

Mac: On a Mac, open up your Finder (usually it’s the smiley-face 

guy at the bottom-left of your Dock), then go into “Applications”, 

then go into “Utilities.” In that folder, you will find a program 

called “Terminal.” Opening that program will bring up the 

command line. I recommend dragging the Terminal application to 

your Dock so that you can easily access it later.

Windows: On Windows, you can find the command line by 

opening the “Run box” by holding down the Windows key and 

pressing R. This will bring up a dialog asking you what you want 

to run. Just type in cmd and then click “OK.” This will bring up the 

command line.

Linux: On Linux, it varies by distribution. However, since Linux is 

usually geared toward more advanced users, the command line is 

usually somewhere in the standard menus. Look for menu items 

saying, “Command Prompt,” “Terminal,” “Shell,” etc.

When the command line starts up, it is usually a black background with white text. 

You generally can’t use your mouse at all within the command line. Think back to the 
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early days of computers before there was a mouse attached, and you only had a single 

black screen and no graphics—only text. The command line is a window into that world.

Try pressing the return key. Notice that it goes to the next line. The text to the left of 

your cursor is known as the command prompt. The actual text is highly dependent on 

your operating system, but it usually gives you status information such as your username 

and the name of the computer. It also usually tells you what directory you are in.

Now, the specific instructions that are available at the command line depends on 

both your operating system (which has the commands as programs) and the shell, 
which is what reads your commands and interprets them to the operating system (and 

implements some of the commands directly). Thankfully, for what we will be doing, the 

different shells behave similarly.

It’s not incredibly important, but common shells include:

Bash This is the most common shell on Linux, and is also the 

default shell on older Macs. Bash stands for “Bourne Again Shell,” 

which is a joke based on the fact that it is a revision of the older 

“Bourne Shell,” originally developed by Stephen Bourne. If you’re 

not a fan of bad puns, it’s possible that the world of programming 

may not be your cup of tea.

Z Shell Starting with Catalina, Macs usually default to the Z Shell, 

or zsh. It is similar to Bash, but newer, more customizable, and is 

more consistent than Bash.

Windows Command Shell This is the shell that is run by default 

on Windows when you run the cmd command mentioned above.

Windows Powershell For more advanced users, Windows also 

offers Powershell, which is similar to the Windows Command 

Shell, but is more integrated into the operating system. Windows 

Command Shell is somewhat of a holdover from the DOS days.1 

It’s preferred for this book because it is more widely available and 

easier to get access to than Powershell, but professional Windows 

programmers tend to use Powershell instead.

1 DOS stands for “Disk Operating System” and was the command line operating system that PCs 
ran before Windows became available.
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As a note, be aware that most people use the terms “command line,” “command 

prompt,” “terminal,” and “shell” pretty interchangeably.

 B.3  Navigating Your Computer Using the  
Command Line

When the command line comes up, you are “in” a directory on your computer. This 

is known as the current directory or working directory. This is likely your home 
directory, which, on most computers, is the directory above all of the typical directories 

you think of on your computer—your desktop (which is itself a directory), the “Photos” 

directory, the “Documents” directory, etc. Your home directory contains these.

However, your home directory itself is embedded within the filesystem of the 

computer as a whole. To see exactly where you are on the computer, you will need to 

print the working directory. On most shells, you can do this by typing pwd and pressing 

enter (you tell the computer you are finished typing your command by pressing enter). 

However, on the Windows Command Shell, you type in echo %cd% instead.

To see the files in the current directory, just type in dir.2 This will print out a list of all 

of the files in your current directory.

On Mac and Linux, all of your hard drives are contained within the same filesystem. 

However, on Windows, the different drives get assigned a letter. The standard hard drive 

is usually the C: drive (drive letters are followed by a colon). To change the drive that you 

are on in Windows, just type the name of the drive followed by a colon and then press 

enter. For instance, to change to the E: drive, just type E:.

Then, for all shells, to change the directory, you would use the cd (change directory) 

command. For new users, it is best to only change one directory at a time. For instance, 

to go into your “Desktop” directory, you would do cd Desktop. Note that, since the 

command line uses spaces to separate parts of the command, if the directory you want 

to go in to contains a space, you will need to group the name together by enclosing the 

name of the directory in double-quotes. For instance, if the directory you want to go into 

is named “My Directory” then, to go into it, you would type cd "My Directory".

If you want to go “up” (to the directory that is above your current directory), you can 

do cd .. . The .. directory is a special directory which always refers to the directory 

2 On some Linux systems, dir is not available, and you will need to type in ls instead.
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that contains the current directory. Similarly, the . directory always refers to the current 

directory.

Another important note is that, on Windows, directories are separated by 

backslashes (\) and, on the other operating systems, directories are separated by 

ordinary forward slashes (/).

To create a new directory inside the current one, use the mkdir command. To create 

a directory called “MyStuff” you would issue the command mkdir MyStuff. Again, if you 

want it to contain spaces, you need to enclose it in double-quotes.

You should practice navigating through the directories on your computer to get used 

to it.

If you want to view a file, you can do that on the command line as well. However, 

most files will just look like gibberish because they are not written to be displayed on 

the command line (they aren’t pure text, even if they contain text). If the file is called 

myfile.txt, then, on Linux and Mac, you would do this by typing cat myfile.txt, and 

on Windows you would do this by typing type myfile.txt.

 B.4 Running Programs
You have already been running programs on the command line. The dir command 

is actually a separate program that lists out the directories for you.3 Shells contain a 

variable called the path which tells them the standard places where they should look 

for programs. For example, on my computer, the dir command is actually in the /bin 

directory. Since /bin is in my path, the shell finds this command when I run it.

However, if a command you want to run isn’t in your path, you have to specify 

exactly where the program exists. That’s why, in this book, when you run your own 

programs, you are always going to start them with a ./ before the name of the program. 

For instance, to run the first program in the book, you will run ./myexit (no spaces). 

3 Commands which change the state of the shell itself are usually implemented by the shell 
instead of as a separate program. For instance, the cd command isn’t a separate program, 
because it is changing where your current shell is running. However, dir takes your current 
directory, and then just prints out what is there and returns to the shell, so it is implemented as a 
separate program.
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This tells the computer that you want it to run the command in the . directory (i.e., the 

current directory) named myexit.4

Every command exits with a status code, which is a number between 0 and 255 

which represents the status that the program exited with. For most programs, the status 

code will just be 0, which means the program exited without problems. However, we 

will use the status code quite a bit in the first part of the book to send back results of the 

program before we get into proper input and output.

To see the exit status of the last command you ran, type the command echo $?. This 

only works on Linux, but you won’t need an equivalent command on Windows.

 B.5 The Environment
One other thing to note is that we will occasionally refer to the environment or to 

environment variables. The environment is a set of values that is passed into a 

program without being explicitly set on the command line. Essentially, you carry your 

environment with you on the command line, and any command you execute inherits 

your current environment variables. On the whole, the environment is ignorable—you 

don’t have to worry about it in most cases. However, for the cases where environment 

variables need to be set, read on.

To set an environment variable, you do export VARNAME=VALUE. This will set the 

environment variable VARNAME to be equal to VALUE. This will be automatically set in 

any program you run going forward until you log out. To unset the variable, do unset 

VARNAME. For the most part, unless the program is looking for a specific environment 

variable, it will be ignored by the program. However, some environment variables do 

important things.

Just remember that if you log out, all of your environment variables will be reset to 

their defaults, so if you want to have them you will have to enter them in again. Also, if 

you accidentally set an environment variable that causes problems, just logging out and 

logging back in will fix the problem. This issue is especially pertinent for Chapter 15.

4 Note that, on Windows, this would actually be .myexit, but, you will be running all of these 
things on Docker, which gives you a Linux machine inside your Windows machine. Therefore, 
when you actually run the command, you will run it as ./myexit, because, even though you got 
there through the Windows Command Shell, you are actually running Linux at that point.
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 B.6 Editing Files
Even people who use the command line regularly tend to edit files using graphical (non- 

command line) programs. Additionally, editing a file in the command line depends 

highly on what command line editors are installed. However, if you are using the Docker 

image mentioned in Appendix A, I installed several common command line editors for 

you.

To edit a file, just type the name of the editor followed by the name of the file to 

edit. For instance, to use the nano editor to edit a file named myfile.txt, just run nano 

myfile.txt. The file doesn’t have to exist before running the command. When you save 

the file from the editor, it will create it if it doesn’t already exist.

Editors included with the Docker image include nano, mle, tilde, jed, mg, emacs, and 

vi. We are going to focus on nano because it is the easiest for basic editing. Others are 

better for more advanced usage (I’ve written most of my books using vi), but they are 

harder to learn the basics.5

nanoa is nice because it gives you the list of common commands at the bottom of the 

screen for reference. The ^ character means to hold down the Ctrl key while pressing the 

other key. With nano you can just type like normal. You can use your arrow keys to move 

around (remember, the mouse doesn’t work at the command line!) and then type in 

control-o to save and control-x to exit.

 B.7 Other Modifications to Your Computer
Another thing you should consider doing to your computer is to tell it to display file 

extensions. The extension is the three- or four-letter code that is tacked on to filenames 

on your computer (after a period) to tell the computer (and you) what format the file 

is and/or what application should open the file. Word documents, for instance, have 

an extension of .doc or .docx, Excel files have an extension of .xls or .xlsx, and pure 

text files that aren’t used for programming have an extension of .txt. This extension is 

5 In fact, even saving and quitting the programs can be difficult in many editors. If you want to try 
something other than nano be sure to research how to use the them before starting them, though 
you can always just close the window if you get stuck.
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actually a part of the name of the file, but many operating systems hide these to make it 

easier on the user.6

As a computer program, you need to see all of the intricacies of what is going on 

in your computer, so it is best to enable seeing file extensions. Every version of every 

operating system puts this in a different place, so I can only give you a broad description 

of how to find it. If you open up your file browser (Finder on the Mac, Explorer on 

Windows), you can usually find the option somewhere in the preferences menu, possibly 

under some sort of “advanced” section of the menus.

6 In my opinion, this actually makes it harder for the user for a lot of reasons. Many operating 
system writers these days prefer lying to users (i.e., not telling them the full name of the file) 
instead of explaining things to users. This is one of the many things that makes users more 
disconnected from the technology they rely on, and keeps them in ignorance rather than help 
them gain understanding about what their computer does. The long-term effect is that a lot 
of things are happening that the user doesn’t understand because relevant information was 
hidden from them. This is supposed to be a simplification, but I’ve generally found that there is 
a difference between simplifying the truth and distorting the truth, and, unfortunately, modern 
frontend developers tend towards the latter.
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 APPENDIX C

Debugging with GDB
The primary intention of this book is to teach you how the computer works under the 

hood. As such, I don’t spend a lot of time focusing on debugging. Nevertheless, the 

standard GNU debugger (GDB) has support for assembly language programming if 

things go awry and you are having trouble figuring it out.

One of the nice things about knowing assembly language is that you can use GDB 

to debug any compiled program, even those without debugging information. Since they 

all compile to the same machine code, they will all work successfully with GDB, even if 

there is no debugging code included.

 C.1 Starting GDB
To start GDB, simply type in gdb on the command line. This will give you a prompt that 

looks like this:

(gdb) _

At the prompt, type

file FILENAME

where FILENAME is the path to the program you want to run. This will load the program 

into the debugger.

You can run the program by just typing in run, but, since you haven’t told it where to 

stop, this will simply run the program to completion, which is probably not what you are 

wanting to do if you plan on debugging your program.

So, before running the program, you need to tell the debugger where to stop.  

This is known as a breakpoint. To add a breakpoint to the entry point of the program 

(i.e., _start), you just issue the following command:

break *_start
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The * just means that _start refers to an address in memory. In this particular case, 

if you left it out, GDB would know what you mean, but I recommend you keep it there 

because, in other cases, GDB might not know what you mean.

Now, you can run the program using the run command:

run

This will immediately stop, letting you know that the debugging hit the breakpoint 

that you added.

 C.2 Stepping Through Code
So, now you are actively debugging your program, what can you do?

Remember that, to the computer, you code is actually machine code—lots of bytes 

strung together into machine-readable instructions. Therefore, what you will want to 

do is to have the debugger disassemble the machine code for you. Since the process 

of converting assembly language to machine code is known as assembling, the process 

of converting machine code back to assembly language is known as disassembling. 

However, remember that any fanciness that you put in your code (comments, local 

labels, etc.) are thrown away during the assembly process. Therefore, the resulting 

assembly code will be very simplistic.

To see the disassembly of the present function, simply issue the following command:

disassemble

The following is the disassembled code from the myexit.s file from Chapter 3:

(gdb) disassemble

Dump of assembler code for function _start:

=> 0x0000000000401000 <+0>:    mov     $0x3c,%rax

   0x0000000000401007 <+7>:    mov     $0x3,%rdi

   0x000000000040100e <+14>:   syscall

End of assembler dump.

(gdb) _

The arrow (=>) points to the current instruction. The long hexadecimal number 

(0x0000000000401000) is the address of the instruction. The number next to it (<+0>) is 

the offset from the start of the nearest previous label or function (_start). To the right of 
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that is the next instruction it will execute, which is the first instruction in our program. 

Also note that the value that we will store in the register is given in hexadecimal. 

Remember, the computer has no idea that you originally typed that value in decimal, so 

it can’t know to tell it to you in decimal.

To see the value of your registers, you can simply type the following:

info registers

This will provide a complete dump of all your registers. Notice at the present 

moment that most of our registers are initialized to zero. Since the first instruction has 

not executed yet, %rax is also zero.

The register values are given in two columns. The left column is the raw value. 

The right column is the debugger’s attempt to interpret your value. Ultimately, the 

left column is the “official” value, but the right column may give additional important 

context. It may translate a value into an offset from an address, translate a hexadecimal 

number into a decimal, etc.

To go to the next instruction, simply type the following:

stepi

This will step to the next machine instruction. If you issue the disassemble 

command again, it will put the arrow on the next line of code. If you issue an info 

registers command, you will see that %rax is now set to 0x3c.

Running stepi again will take you to the next line. Running stepi again will have it 

issue the system call. Since the system call exits the program, the debugger will report 

the following:

[Inferior 1 (process 152) exited with code 03]

“Inferior 1” is simply GDB’s internal name for our process. The exit code is the value 

that it would have given back to the shell.

 C.3 Managing Breakpoints
In addition to stepping through the code, you can also just set breakpoints wherever you 

wish. If you have a symbol that the debugger knows about (because it is declared with 

.globl), you can add breakpoints directly to these locations just like we did for _start. 

You can add as many breakpoints as you wish.
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To get a list of all of your defined breakpoints, use the command info break. 

This will give a list of your breakpoints, each with a number that the debugger uses to 

reference it. To remove a breakpoint, do delete NUMBER, where NUMBER is the number of 

the breakpoint you wish to remove (as revealed by info break). Note that this does not 

renumber the breakpoints. Even if you add a breakpoint back, it will be created with a 

new number.

Additionally, you can throw in breakpoints at any point within an assembly language 

function. When you ran the disassemble command, the debugger gave all of the 

addresses of each instruction. You can add a breakpoint to any instruction you want just 

by doing break *ADDRESS, where ADDRESS is the memory address of the instruction (as 

given by GDB) that you want to break before. Alternatively, you can use the offsets GDB 

gives you from the start of the function. When we disassembled myexit.s, the second 

instruction was listed as having an offset of +7. Therefore, I can add a breakpoint to that 

instruction by saying break *_start+7.

If I want to add a breakpoint to the interior of a function I haven’t arrived at yet, I 

can disassemble that particular function by giving GDB the command disassemble 

MYFUNCTION, where MYFUNCTION is the label of the code I want to disassemble. You can 

also give an address instead of the name of a function (but don’t prefix it with * like you 

did in the break command).

 C.4 Printing Values
In addition to displaying all of the register values, you can also display them individually 

with the print command. However, in GDB, to print out a register, it has to be prefixed 

with a $ instead of a %. Therefore, to print the contents of %rax, you would issue 

print $rax. Now, you can specify what format you want this value to be displayed in 

by adding in a format code. print/d prints the value as a decimal, print/x prints the 

value as hexadecimal, print/t prints the value as a binary, print/c prints the value as a 

character, and print/f prints the value as a floating-point value.

While printing out register values is useful, we often want to print out values 

in memory as well. For this, we will need to tell the computer what kind of value it 

needs to print. However, the GNU debugger was actually primarily built around the 

C programming language. Therefore, you will need to “cast” the value into a type 

understood by GDB.
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So, if there is a memory location that contains a quadword, called myQuadword, I 

could print it out by saying: print/d (long long)myQuadword. Here (long long) is the 

name of the C type that represents quadwords. So, (long long)myQuadword casts the 

value into the given type. Basic C types include:

• char (single byte)

• short (2 bytes)

• int or long (4 bytes)

• long long (8 bytes)

• float (4-byte floating-point value)

• double (8-byte floating-point value)

• int * (8-byte pointer to an int type)

• void * (8-byte pointer to an undetermined type)

• void ** (8-byte pointer to an eight-byte pointer to an undetermined 

type)

You can also add in a * to dereference (look up the value for) a pointer. Let’s say that 

%rax contained a pointer to an integer. We could look up that value by doing

print/d *(int *)$rax

For more information on using the GNU debugger, you can check the manual out at: 

https://sourceware.org/gdb/current/onlinedocs/gdb/.
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 APPENDIX D

Nasm (Intel) Assembly 
Language Syntax
This book has focused on the assembly language syntax used by the GNU Assembler, 

known as AT&T syntax, because it originated on Unix which was, at the time, developed 

by AT&T (the phone company). The reason for this is that it is the “native” syntax used in 

the Linux kernel and output by the GNU Compiler Collection. However, there is another 

syntax that is commonly used, which is known as “Nasm” Syntax (named after the 

popular assembler that uses it) or “Intel” syntax (because this is the syntax used in Intel’s 

manuals on their chips). If you want to learn new instructions from Intel’s manuals, you 

need to know Intel syntax, and this short guide should help you with most differences.

 D.1 Capitalization
This is not a real difference per se, but, conventionally, in AT&T syntax instruction, 

names and register names are written in lowercase. In Nasm Syntax, the convention is to 

use all uppercase. Therefore, the mul instruction is actually MUL in Nasm Syntax. Again, 

this is a convention, not a requirement, but I’ve also found that following this convention 

helps you realize which syntax you should be thinking about.

 D.2 Register Naming and Immediate-Mode Prefixes
While register names are prefixed in AT&T syntax with a % sign, registers in Nasm Syntax 

are not prefixed at all. Therefore, you would refer to %rax as just RAX.

Additionally, immediate-mode values do not have the $ prefixes in Nasm Syntax. The 

number 1 is just 1, not $1.
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 D.3 Operand Order
The most difficult difference to overcome is the difference in operator order. Basically, 

in every instruction, Intel syntax reverses the order of its operands. The destination 

is placed first, and the remaining arguments, if any, are after. So, for instance, the 

instruction mov %rax, %rdx in AT&T syntax would be MOV RDX, RAX in Nasm Syntax.

 D.4 Specifying Memory Addressing Modes
Addressing modes in Nasm Syntax are also different from AT&T syntax. Just like AT&T 

syntax, in Nasm Syntax, you can leave off any part of the addressing mode, and it will 

assume it is zero (or 1 for the multiplier). If you remember from Chapter 6, the full format 

for a memory address reference in AT&T syntax is

VALUE(BASEREG, IDXREG, MULTIPLIER)

The formula to compute the final address is

address = VALUE + BASEREG + IDXREG * MULTIPLIER

For Nasm Syntax, memory references are always enclosed in brackets and  

look like this:

[BASEREG + IDXREG*MULTIPLIER + VALUE]

Interestingly, this literally tells you how to compute the address as well. You can also 

reorder the values in the brackets as desired for clarity.

 D.5 Specifying Operand Sizes
In AT&T syntax, we normally add a suffix to the instruction indicating what “size” of data 

we are using: q for quadword (64-bit) values, l for 32-bit values, w for 16-bit values, and b 

for single-byte values.
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In Nasm Syntax, the size is applied to the operand not the instruction. Additionally, 

since the place where size is unknown is on pointers (register sizes are pretty obvious 

and immediate-mode sizes are inferable from context), these operands are prefixed with 

SIZE PTR where SIZE is one of QWORD, DWORD, WORD, or BYTE.1

So, to move the number 1 to a byte of memory specified by the label myvalue, you 

would do MOV BYTE PTR [myvalue], 1.

1 On vector extensions, these can also be XMMWORD, YMMWORD, and ZMMWORD. See 
Appendix F for more information on what XMM, YMM, and ZMM refers to.
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 APPENDIX E

Common x86-64 
Instructions
The following commands are given by their instruction family name. For instance, movq, 

movl, etc. are simply referred to by their family name, mov. Since registers often need to 

be referred to in the description, we will refer to their 64-bit version, but if you are using 

a smaller version of the command, you will usually be using the smaller version of the 

register. For instance, on the mul command, the table describes its function as working with 

%rax, but mull would be working with %eax instead, and mulw would be working with %ax.

Note that when %rax and %rdx are combined to act as a larger value, %rax contains 

the low-order bits and %rdx contains the high-order bits.

To keep the table abbreviated, many caveats for using each instruction are ignored. 

For a full description of the full functionality of each instruction, AMD and Intel each 

have instruction manuals clocking in at well over 600 pages each (which is why this 

appendix aims to simplify). The AMD manual is the AMD64 Architecture Programmer’s 

Manual Volume 3 and the Intel manual is the Intel 64 and IA-32 Architectures Software 

Developer’s Manual Volume 2.

 E.1 Data Moving Instructions

Instruction Meaning Chapter

mov SRC, DST Moves the value stored in SRC into the location designated by DST. 3

lea SRC, DST Moves the address indicated by SRC into the location designated by DST. 6

xchg SRC, DST Swaps the values in SRC and DST. 7

bswap DST Reverses the bytes of a destination register (32-bit or 64-bit registers 

only).

7
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 E.2 Arithmetic Instructions

Instruction Meaning Chapter

add SRC, DST Adds the contents of SRC to DST and stores the result in DST. 4

sub SRC, DST Subtracts the contents of SRC from DST and stores the result in DST. 4

mul SRC Multiplies %rax by SRC and stores the result in the combined 

registers %rax and %rdx. Treats all values as unsigned.

4

div SRC Divides the combined %rax and %rdx by SRC and stores the result 

in %rax and the remainder in %rdx. If just using %rax to store the 

dividend, it is wise to explicitly set %rdx to zero. Treats all values as 

unsigned.

4

inc DST Increments the value (adds one) at the location designated by DST. 4

dec DST Decrements the value (subtracts one) at the location designated  

by DST.

4

idiv SRC Similar to div but performs a signed integer division. 8

imul SRC Similar to mul but performs a signed integer multiplication. 8

adc SRC, DST Add with carry. Similar to add, but also adds one if the carry flag  

is set.

8

 E.3 Stack Instructions

Instruction Meaning Chapter

push SRC Pushes the given value onto the stack. Decrements %rsp by the size of 

the value in SRC and then moves the value stored in SRC into the location 

specified by the new value of %rsp.

11

pop DST Pops off the value from the current location of the stack. Moves the value 

stored in the location specified by %rsp into DST and then adds the size of 

DST to %rsp.

11
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 E.4  Comparison, Branching, and Looping 
Instructions

Instruction Meaning Chapter

cmp SRC, DST Compares SRC to DST by performing a virtual subtraction (subtracting 

SRC from DST), but only sets flags.

5

test SRC, DST Performs a logical AnD to the two arguments and then sets flags 

according to the result.

8

jmp DST Jumps to the value specified by DST. 5

jmp (DST) Jumps (sets the program counter) to the address specified by the 

register DST.

9

jmp *DST Indirect jump. Looks up the value in the address specified by DST and 

sets the program counter to that address.

9

jCC DST Conditional jump. CC is the condition code which tells which conditions 

(based on the %eflags register) it should jump on.

5

loop DST Decrements %rcx and then jumps to DST if %rcx is not zero. 5

loopne DST Similar to loop, but also will not jump if the zero flag (ZF) is set. 5

loope DST Similar to loop, but also will not jump if the zero flag (ZF) is not set. 5

 E.5 Status Flag Manipulation Instructions

Instruction Meaning Chapter

sahf Stores the contents of %ah into %eflags. 9

lahf Stores the contents of %eflags into %ah. 9

clc Clears the carry flag (CF). 9

setc Sets the carry flag (CF). 9

cld Clears the direction flag (DF). 9

setd Sets the direction flag (DF). 9
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 E.6 Bit Operations

Instruction Meaning Chapter

and SRC, DST Does a logical AnD of each bit in both SRC and DST and stores the 

resulting value in DST.

9

or SRC, DST Does a logical oR of each bit in both SRC and DST and stores the 

resulting value in DST.

9

xor SRC, DST Does a logical xoR of each bit in both SRC and DST and stores the 

resulting value in DST.

9

nor SRC, DST Does a logical noR of each bit in both SRC and DST and stores the 

resulting value in DST.

9

not DST Does a logical noT of each bit in DST and stores the result in DST. 9

shl DST Shifts the bits of DST to the left (toward the most significant bit). Bits 

that are shifted off are discarded, and “new” bits shifted in from the 

right are zero.

9

shr DST Shifts the bits of DST to the right (toward the least significant bit). Bits 

that are shifted off are discarded, and “new” bits shifted in from the 

left are zero.

9

rol DST Rotates (shifts) the bits of DST to the left (toward the most significant 

bit). Bits that are shifted off to the left are used as the “new” bits 

shifted in from the right.

9

ror DST Rotates (shifts) the bits of DST to the right (toward the least significant 

bit). Bits that are shifted off to the right are used as the “new” bits 

shifted in from the left.

9

bsf SRC, DST Searches SRC for the first nonzero bit it finds (starting at the least 

significant bit as bit 0) and stores the index of that bit in DST. DST 

must be a register.

9

bsr SRC, DST Searches SRC for the first nonzero bit it finds (starting at the most 

significant bit) and stores the index of that bit in DST. DST must be a 

register.

9

lzcnt SRC, DST Counts the number of leading zeroes of the value in SRC and stores 

that count in DST. DST must be a register.

9
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 E.7 Invocation-Oriented Instructions

Instruction Meaning Chapter

syscall Invokes a “system call”—transfers control to the operating system. 3, 10

call DST Calls a function. This pushes the address of the next instruction (the 

return address) onto the stack and transfers control to DST.

11

enter $SIZE, $0 Sets up a stack frame by (a) pushing %rbp onto the stack, (b) 

copying %rsp to %rbp, and (c) subtracting SIZE bytes from %rsp to 

make room for local variables on the stack.

11

leave Tears down a stack frame by (a) copying %rbp to %rsp and (b) 

popping %rbp from the stack.

11

ret Returns from a function call. Pops the return address off of the stack 

and transfers control to that address.

11

 E.8 String and Memory Block Instructions

Instruction Meaning Chapter

movs Loads a value from the address specified in %rsi and stores the value in the 

address specified in %rdi. It then moves both %rsi and %rdi to the “next” 

address based on the direction flag (DF).

9

cmps Loads values from the addresses in %rsi and %rdi and compares them, 

setting %eflags. It then moves both %rsi and %rdi to the “next” address 

based on the direction flag (DF).

9

scas Loads a value from the address specified by %rdi and compares that value 

with %rax (modifying %eflags) and moves %rdi to the “next” address 

based on the direction flag (DF). This instruction can be prefixed with repne 

to repeat as long as the value is not equal.

9

(continued)
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Instruction Meaning Chapter

rep This can be used as a prefix for the preceding instructions. Adding this as a 

prefix causes the given instruction to repeat, each time decrementing %rcx. 

The repetition ceases when %rcx is zero.

9

repe This is similar to rep but also will terminate if the zero flag (ZF) is set. 9

repne This is similar to rep but also will terminate if the zero flag (ZF) is not set. 9

 E.9 SSE Instructions
These instructions generally use an XMM register as at least one of the parameters, 

usually implied by the operation. When these operations refer to types, available types 

are

• Single-value single-precision floating point (ss)

• Single-value double-precision floating point (sd)

• Single-value double-word integer (si)

• Single-value double quadword integer (dq)

• Packed single-precision floating point (ps)

• Packed double-precision floating point (pd)

• Packed double-word integer (pi or sometimes pd)

• Packed quadword integer (pq)

• Packed byte integer (pb)

• Packed word integer (pw)

Note that in the parallel integer adding instructions, the p and the size (i.e., b, w, d, 

and q) are separated by the instruction name itself. In other words, instead of addpq, the 

instruction is actually paddq.
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Instruction Meaning Chapter

movsd SRC, DST Moves SRC into the low-order 8 bytes of DST without affecting the 

high- order 8 bytes.

F

movss SRC, DST Moves SRC into the low-order 4 bytes of DST without affecting the 

higher-order bytes.

F

movaps SRC, DST Moves a 128-bit value into DST. Causes an exception if the value 

is not aligned. optimized for floating-point values.

F

movups SRC, DST Moves a 128-bit value into DST. Does not cause an exception if 

the value is not aligned. optimized for floating-point values.

F

movdqa SRC, DST Moves a 128-bit value into DST. Causes an exception if the value 

is not aligned. optimized for integer values.

F

movdqu SRC, DST Moves a 128-bit value into DST. Does not cause an exception if 

the value is not aligned. optimized for integer values.

F

pslldq VAL, DST Shifts the value in SRC to the left by VAL bytes. F

psrldq VAL, DST Shifts the value in SRC to the right by VAL bytes. F

addXX SRC, DST Does a parallel add of SRC to DST and stores the result in DST 

(only valid for floating-point values).

F

subXX SRC, DST Does a parallel subtract of SRC from DST and stores the result in 

DST (only valid for floating-point values).

F

mulXX SRC, DST Does a parallel multiply of SRC and DST and stores the result in 

DST (only valid for floating-point values).

F

divXX SRC, DST Does a parallel divide of DST by SRC and stores the result in DST 

(only valid for floating-point values)

F

paddX SRC, DST Does a parallel add of SRC to DST and stores the result in DST 

(only valid for integer values).

F

psubX SRC, DST Does a parallel subtract of SRC from DST and stores the result in 

DST (only valid for integer values).

F

pmulX SRC, DST Does a parallel multiply of SRC and DST and stores the result in 

DST (only valid for integer values).

F

(continued)
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Instruction Meaning Chapter

pdivX SRC, DST Does a parallel divide of DST by SRC and stores the result in DST 

(only valid for integer values)

F

cvtXX2YY SRC, DST Converts the low-order bytes of SRC from a type given by xx into 

the low- order bytes of DST with a type given by YY. not available 

for all types and combinations.

F

 E.10 Miscellaneous Instructions

Instruction Meaning Chapter

lock This is a prefix that can be tied to memory-oriented instructions that 

guarantee that we have exclusive access to the cache for that address.

K

nop Performs a “no-operation” operation. 9
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APPENDIX F

 Floating-Point Numbers
So far, the only numbers we’ve dealt with are integers—numbers with no decimal 

point. Computers have a general problem with numbers with decimal points, because 

computers can only store fixed-size, finite values. Decimal numbers can be any length, 

including infinite length (think of a repeating decimal, like the result of 1/3).

The way a computer handles decimals is by storing them at a fixed precision 

(number of significant bits). A computer stores decimal numbers in three parts—the 

sign bit, the exponent, and the mantissa. The mantissa contains the actual digits that 

will be used, and the exponent is what magnitude the number is. For example, 12345.2 

can be represented as 1.23452 * 10^4. The mantissa is 1.23452 and the exponent is 4 with 

a base of 10. Computers, however, use a base of 2. All numbers are stored as X.XXXXX 

* 2^XXXX. The number 1, for example, is stored as 1.00000 * 2^0. This way of storing 

numbers is known as a floating-point representation, because the position of the 

significant digits with respect to the decimal point can vary based on the exponent.

Now, the mantissa and the exponent are only so long, which leads to some 

interesting problems. For example, when a computer stores an integer, if you add 1 to it, 

the resulting number is one larger. This does not necessarily happen with floating-point 

numbers. If the number is sufficiently big, adding 1 to it might not even register in the 

mantissa (remember, both parts are only so long). This affects several things, especially 

order of operations. If you add 1.0 to a given floating-point number, it might not even 

affect the number if it is large enough. For example, on x86 platforms, a 4-byte floating- 

point number, although it can represent very large numbers, cannot have 1.0 added to 

it past 16777216.0, because it is no longer significant. The number no longer changes 

when 1.0 is added to it. So, if there is a multiplication of two numbers that are added 

together, doing the addition first may give different results than if the multiplication were 

distributed. For instance, 1000.0 * (16777216.0 + 1.0) gives a different result than 

1000.0 * 16777216.0 + 1000.0 * 1.0. The former yields 16777216000.0 while the 

latter yields 16777217024.0 (which is still not exactly correct).
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The way that these are stored in memory is in a format known as IEEE 754. The 

details are a little weird (and outside the scope of this book), but, in general, for double- 

precision (64-bit) values, 1 bit is reserved for the sign, 11 bits are reserved for the 

exponent, and 52 bits are reserved for the mantissa. For single-precision (32-bit) values, 

1 bit is reserved for the sign, 8 bits are reserved for the exponent, and 23 bits are reserved 

for the mantissa.

You should note that it takes most computers a lot longer to do floating-point 

arithmetic than it does integer arithmetic. So, for programs that really need speed, 

integers are mostly used.

There are a lot of features/considerations available for floating-point and vector 

(multiple value simultaneously) operations on x86-64. This appendix is simply to 

introduce the topic, not provide a complete reference.

 F.1 History
The floating-point unit for x86 architectures has been through several iterations. The 

original 8086 chip had no support for floating point, and everything had to be done 

manually. Floating-point support was initially added with a co-processor, the 8087, 

where the processor deferred relevant instructions to the co-processor. The 8087 had 

an 80-bit floating-point value. It had eight registers arranged as a stack, known as the 

FPU (floating-point unit) stack, and operations mostly revolved around the “top” value 

of the stack. By the time the 80486 rolled around, the floating-point unit was integrated 

into the chip.

Then, to extend floating-point support (and add parallel operations), Intel and AMD 

each added additional instructions, where Intel’s was known as “MMX” and AMD’s was 

known as “3DNow!”. Intel’s MMX added eight special registers for floating point, naming 

them %mm0 through %mm7. These registers can be accessed directly, rather than having to 

go through a stack.

For the Pentium III, Intel added a set of instructions similar to 3DNow! known as SSE 

(Streaming SIMD Extensions) which uses a set of eight registers known as XMM registers 

(%xmm0 through %xmm7), which are 128 bits wide, but can only be used to store four 32- bit 

values simultaneously. The next iteration, SSE2, was introduced on the Pentium IV and 

expanded the number of registers to 16 (%xmm0 through %xmm15) and made it so that they 

could be accessed in a variety of ways (as integer or floating-point values of various sizes). 

SSE2 is required to be available for the x86-64 instruction set on both AMD and Intel.
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Some chips support additional extensions, such as later versions of SSE and various 

versions of AVX (advanced vector extensions) which, depending on the version, can 

support additional registers which are sized at up to 512 bits. However, we will not cover 

these additional extensions.

 F.2 Working with SSE2 Registers
SSE2 registers are 128 bits long. However, they do not use 128-bit values. The register 

can be treated as two 64-bit values, four 32-bit values, eight 16-bit values, or sixteen 8-bit 

values. Operations on these registers, unless otherwise specified, occur for all values 

simultaneously. However, if you are only interested in one value, then the lowest-order 

bits are the ones considered (the instructions still operate on everything, but you can 

ignore the other values).

We will start considering only using the XMM registers for holding a solitary double- 

precision (64-bit) floating-point value.

You can use the standard movq instruction to move a quadword into or out of one 

of the XMM registers. If the destination register is an XMM register, then the high-order 

quadword is zeroed out. This is generally fine, especially if you are only working with 

one value at a time in the XMM registers. This is an easy way to move data back and forth 

from/to memory or from/to a general-purpose register.

We can load values one of two ways. We can either encode them in memory as 

floating-point values, or we can load them in as integers and convert them.

In the data section, just like there is the .quad directive for 64-bit integers, there is a 

.double directive for 64-bit floating-point values. We can encode these and load them 

just like normal. For instance:

myval:

    .double 57.2

.section .text

_start:

    movq myval, %xmm0
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Note that there is no immediate-mode instructions for loading values.

Alternatively, we may be starting with integers and want to convert them to floating 

point. To do this, we can use cvtsi2sd, which means convert (cvt) a single value (s) that 

is an integer (i) to (2) a scalar (s) double-precision floating-point value (d). This takes 

a source register (which cannot be an XMM register) and a destination register (which 

must be an XMM register).

So, if we wanted the number 5 as a floating-point value, we can load it in to %xmm0 as 

follows:

    movq $5, %rax          # Put the integer 5 in %rax

    cvtsi2sd %rax, %xmm0   # Convert it to a double in %xmm0

 F.3 Moving Whole Registers
To move a whole 128 bits, there are actually numerous instructions for doing so! There 

are two general classes of instructions—aligned instructions and unaligned instructions 

(see Appendix I for more details on alignment). The unaligned instructions are slower, 

but you can do them on any register or memory location. The aligned instructions are 

faster, but, if done using a value that is not 16 byte aligned, will trigger an exception.

The other difference between the instructions is that, on some processors, the 

instructions make slight speed differences if used on integer or floating-point values. The 

instructions are

• movdqu: This instruction is for unaligned moves optimized for 

integers.

• movdqa: This instruction is for aligned moves optimized for integers.

• movups: This instruction is for unaligned moves optimized for 

floating-point values.

• movaps: This instruction is for aligned moves optimized for integers.

So, if you are using registers or you know the memory you are loading from is 

aligned, use the aligned version of the instruction. Otherwise, use the unaligned 

version.1

1 Strangely, there are actually two more instructions as well! movupd and movapd are equivalent to 
movups and movaps, but use more space and are therefore generally slightly less optimized.
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 F.4 Floating-Point Numbers and Function Calls
When making function calls that use floating-point numbers, there are several 

considerations. For parameters which are floating-point values, the registers %xmm0 

through %xmm7 are used to pass the values. If a function takes both floating-point and 

non-floating-point values, the non-floating-point values are passed in the ordinary way 

(using %rdi, %rsi, %rdx, %r8, and %r9), while floating-point values are passed using the 

XMM registers.

Additionally, for functions (like fprintf) which take a variable number of 

arguments, the number of XMM registers used should be put into %rax. The reason for 

this is so that the called function knows how many vector registers it needs to preserve.

If the return value is a floating-point value, it is returned in %xmm0.

So, if we had a function with the call signature double myfunc(int a, double b, 

int c, double d), we would pass a in %rdi, b in %xmm0, c in %rsi, and d in %xmm1. The 

return value would be in %xmm0. If this was a variadic function (i.e., it took a variable 

number of arguments), then we would set %rax to 2 in order to signify that only two 

XMM registers have contents of interest.

 F.5 Floating-Point Arithmetic Operations
Now that the value is in the register, we can do standard operations with slightly different 

instructions. Adding an sd suffix to the end of the arithmetic instructions makes them 

operate on scalar (single-value), double-precision values. So, if %xmm0 and %xmm1 both 

have double-precision values loaded, I can do addsd %xmm0, %xmm1 to add them 

together and store the result in %xmm1.

Multiply (mulsd) and divide (divsd) now take both a source and destination 

operand. For division, the first operand is the divisor, and the second operand is the 

dividend and the destination for the resulting quotient.

When you are done with your floating-point operations, you have several options:

• Convert it back to an integer with cvtsd2si.

• movq it back to %xmm0 to be returned as the return value for your 

function.

• movq it to a register to pass as a parameter.
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The following program will divide 1 by 3 and then print out the result using fprintf:

fpdiv.s

.globl main

output:

    .ascii "The result is %f\n\0"

.section .text

main:

    enter $0, $0

    movq $1, %rax

    movq $3, %rbx

    cvtsi2sd %rax, %xmm0

    cvtsi2sd %rbx, %xmm1

    divsd %xmm1, %xmm0

    movq stdout, %rdi

    movq $output, %rsi

    call fprintf

    leave

    ret

All of these operations can also be done using single-precision (32-bit) floating-point 

values as well. Simply modify the sd suffix to be ss (scalar single precision). This will give 

you the instructions addss, subss, mulss, divss, cvtss2si, and cvtsi2ss.

However, when passing it to a function (such as fprintf) that requires  

a double- precision value, you will need to change the “size” of the value to match. If you 

have a single-precision floating-point value and want to convert it to a double-precision 

floating-point value, you can use cvtss2sd, which you can call as cvtss2sd SRC, DEST.  

Or, if you need, you can go the other way with the similar instruction cvtsd2ss.
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 F.6 Vector Operations
In addition to handling individual values, SSE2 can also handle multiple values at the 

same time.

Since the XMM registers are 128 bits long, they can be used to store two double- 

precision values or four single-precision values. These are known as “packed” values, 

because you are packing more than one value into the register.

To move a value into a different part of the register, you can load directly into the 

low-order bytes of the register and then shift the register to the left to make room for 

the next one. However, the typical movq instruction will zero out the higher-order bytes 

when moving in a 64-bit value. Therefore, a different instruction, movsd, will move in a 

quadword but keep the higher-order bytes of the register intact.

However, to shift an XMM register to the left, we have to use SSE-specific 

instructions. The instruction pslldq will shift an XMM register to the left by a specific 

number of bytes. So, pslldq $8, %xmm5 will shift the contents of the %xmm5 register to the 

left by 8 bytes, allowing for another quadword to be inserted.

The following is a snippet of how to take a double-precision value that is in memory 

and copy it to both quadwords of an XMM register:

mydata:

    .double 1.5

.section .text

    # ... previous code ...

    movq mydata, %xmm6   # movq zeroes out upper bytes

    pslldq $8, %xmm6     # shift this value to higher-order bytes

    movsd mydata, %xmm6  # load the value into lower bytes

                         # without affecting upper bytes

Likewise, to extract values, you can just do an ordinary movq to move data out of the 

register and then shift the source register to the right with psrldq (which works the same 

way) to get at the next value.

You can use this same technique to load smaller values as well, though you will 

need to use the movss instruction to move 4 bytes (instead of eight) without affecting 

the others. While SSE can operate on word-sized and byte-sized values as well, you are 

probably best to load them either 4 or 8 bytes at a time.
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Loading values in this way allows you to perform operations in parallel. For floating- 

point values, the instruction looks like the normal arithmetic instruction, but with a p 

added (for packed) and then d for double precision and s for single precision. Therefore, 

mulpd %xmm0, %xmm1 would multiply together the low-order double-precision values 

of %xmm0 and %xmm1 and store it in the low-order double-precision location of %xmm1. 

Simultaneously, it would do the same for the high-order double-precision values. So 

you would actually be doing two parallel multiplies with the same instruction. If you are 

doing single-precision floating point, you can do four parallel multiplies with the same 

instruction.

The following program will multiply the value 2.1 by 5.0, 6.0, 7.0, and 8.0 

simultaneously and then display the results using fprintf. In order to do all four at a 

time, the values will be stored as single-precision floats. However, the fprintf function 

requires that they be passed in separate registers as double-precision floating-point 

values. The majority of the code is dedicated to managing this transition—extracting 

values to individual XMM registers and converting them to double-precision floating- 

point values.

vectormultiply.s

.globl main

.balign 16

starting_value:

    .single 2.1, 2.1, 2.1, 2.1

multiply_by:

    .single 5.0, 6.0, 7.0, 8.0

output:

    .ascii "Results: %f, %f, %f, %f\n\0"

.section .text

main:

    enter $0, $0

    # Load the values a whole 128-bits at a time

    movaps starting_value, %xmm4

    movaps multiply_by, %xmm5

    # Multiply
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    mulps %xmm4, %xmm5

    # Extract into parameters for fprintf

    movss %xmm5, %xmm0      # Extract the first value to %xmm0

    cvtss2sd %xmm0, %xmm0   # Upgrade from a float to a double

    psrldq $4, %xmm5        # Shift the next value into position

    movss %xmm5, %xmm1      # Extract the next value to %xmm1

    cvtss2sd %xmm1, %xmm1   # Upgrade from a float to a double

    psrldq $4, %xmm5        # Shift the next value into position

    movss %xmm5, %xmm2      # Extract the next value to %xmm2

    cvtss2sd %xmm2, %xmm2   # Upgrade from a float to a double

    psrldq $4, %xmm5        # Shift the next value into position

    movss %xmm5, %xmm3      # Extract the next value to %xmm3

    cvtss2sd %xmm3, %xmm3   # Upgrade from a float to a double

    movq $4, %rax # Protect 4 XMM registers

    # Invoke function

    movq stdout, %rdi

    movq $output, %rsi

    call fprintf

    leave

    ret

As you can see, although the marshalling of the values into parameters took some 

doing, the actual multiplication was done with a single instruction! If you have a lot of 

mathematics to do, this is a fast way to get it done.

SSE can also perform vector operations with integers as well. For those, the 

instructions are prefixed with a p (for packed), then the name of the operation, and 

then the size of the operands (b for bytes, w for words, d for double-words, and q for 

quadwords). So, paddw %xmm0, %xmm1 adds each byte of %xmm0 to %xmm1.

In any case, this has been an extremely short (and simplified) introduction to a huge 

topic. For more, the official reference manuals from Intel and AMD have a lot of good 

information. Additionally, Daniel Kusswurm’s Modern x86 Assembly Language has a lot 

of detail about SSE programming as well as other vector extensions such as AVX, AVX2, 

and AVX-512.
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 APPENDIX G

The Starting State 
of the Stack
The stack starts off with the following values already in place (from high memory to low):

• Null pointer

• Pointer to the nth environment variable (if present)

• Pointer to the second environment variable (if present)

• Pointer to the first environment variable (if present)

• Null pointer

• Pointer to the nth program argument (if present)

• Pointer to the second program argument (if present)

• Pointer to the first program argument (if present)

• Pointer to the program filename

• Command line argument count (including the command itself)

Therefore, if you are in the _start entry point, you can walk through stack offsets 

to load this information into your program. The environment variables are stored as 

single strings, such as MYVAR=MYVAL, which, if you were interested in, you would need to 

separate into the key (MYVAR) and the value (MYVAL).

So, for instance, the following code loads the argument count into %rax and the 

pointer to the filename into %rbx:

_start:

    movq 0(%rsp), %rax

    movq 8(%rsp), %rbx
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If you are using the C library (and starting with main instead of _start), then the C 

library has done this for you. The first parameter to main is the command line argument 

count (and therefore will be available in %rdi). The second parameter to main is a pointer 

to the array of pointers to the command line argument strings, and this pointer will be 

in %rsi. Finally, you can get environment variables individually by calling the getenv 

function or get all of them by calling the environ function.

Note that while the beginning of the stack (growing downward in memory) is near 

0x00007fffffffffff, Linux implements some randomization to this to prevent hackers 

from being able to guess where in memory the stack actually lives.
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APPENDIX H

 ASCII, Unicode, and UTF-8
This book focuses on using ASCII codes for character data. As mentioned, the reason for 

this is that ASCII is fairly straightforward and is also compatible with the more advanced 

international standard, Unicode, to some degree.

 H.1 Unicode
The core problem that Unicode attempts to solve is that, prior to Unicode, a whole hosts 

of ad hoc solutions had been implemented to add additional characters to strings, and 

none of them had a big picture in mind. In most of these systems, you could choose a set 

of characters, often known as a code page, and that essentially mapped a set of numbers 

to how they were displayed on-screen.

The problem with the code page approach becomes apparent (a) when you want to 

mix code pages and (b) when different groups come up with different code pages. What 

if you want to write a paper in Kanji (a Japanese writing system) about Sanskrit and its 

development into Hebrew? All of a sudden, code pages start looking pretty limited.

However, there is a problem with expanding the character sets, whether 

standardized or not. All existing documents generally used ASCII. Moving to a new 

standard would be difficult if all of your old documents (and old programs) were now 

defunct.

The solution that the Unicode Consortium came up with is to separate out the list 

of characters from how they are represented. Unicode assigns each character, in any 

language, a 32-bit number. Thirty-two bits gives them over four billion possibilities, so 

they are unlikely to run out. The current version of Unicode (Unicode 13.0) has 143,859 

characters. This is much more than can be represented in 8 or 16 bits, but is a tiny 

fraction of what is available on inside 32 bits.
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When talking about Unicode characters, they are referenced as U+XXXX, where XXXX is 

a hexadecimal value. This is known as the character’s code point. Since most values for 

most languages are in the first 16 bits, Unicode code points are usually referenced using 

16-bit hexadecimal values, though any length hexadecimal value (up to 32 bits) can be 

used. For common ASCII characters, the code point and the ASCII code are the same.

 H.2 Unicode Encodings and UTF-8
Even though every character has a unique code point, that doesn’t mean that it has a 

unique representation on the computer. These representations are known as character 
encodings. A very simple character encoding for Unicode is UTF-32. In this encoding, 

each character is 32 bits wide, and the value is simply the Unicode value. This is a 

straightforward encoding and can be treated in code fairly simply. The problem is that it 

isn’t compatible with hardly anything.

Therefore, the encoding of choice is usually UTF-8. UTF-8 utilizes different lengths 

of characters. Therefore, if I want to find the 13th character in a string, I can’t just do an 

indexed lookup. Instead, I have to go through each character individually (figuring out its 

length along the way) in order to find the 13th character. The advantage, however, is that 

if you are using an old program that doesn’t read UTF-8, if you just use standard English 

characters, it looks like ASCII.

The way that UTF-8 encodes characters of different length is by using the first bit of 

the first byte to specify if the character is multibyte or not. In traditional ASCII, the first 

bit is always zero, so this doesn’t cause any problems with ASCII.

The way that UTF-8 is encoded is as follows:

• Code points U+0000 to U+007F: Encoded as 1 byte, 0xxxxxxx (7 

bits)

• Code points U+0080 to U+07FF: Encoded as 2 bytes, 110xxxxx 

10xxxxxx (11 bits)

• Code points U+0800 to U+FFFF: Encoded as 3 bytes, 1110xxxx 

10xxxxxx 10xxxxxx (16 bits)

• Code points U+10000 to U+10FFFF: Encoded as 4 bytes, 11110xxx 

10xxxxxx 10xxxxxx 10xxxxxx (21 bits)
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Here, each x represents a bit from the Unicode code point value. For example, 

the Greek lowercase beta (β) is the code point U+03B2. In binary, this is 1110110010, 

which is ten bits long. In UTF-8, this gets encoded as 2 bytes, which allows for 11 bits, 

so the value gets extended to 01110110010. This gets encoded into the format specified 

previously as 11001110 10110010 or, in hexadecimal, 0xCEB2.

If you were to try to find the nth character of a string, you would use the initial bits of 

each character to know how long the character should be.

 H.3 Some Weird Bits of UTF-8
Also, in UTF-8, some documents start with a byte-order mark (BOM), which is based on 

another Unicode encoding, UTF-16. When translated to UTF-8, this value is 0xEFBBBF. If 

this value occurs at the start of a UTF-8 file, it can be basically ignored.

One important issue that I’ve had some (bad) experience with is the Unicode 

character U+FFFD, the “Unicode Replacement Character.” This character is sometimes 

used by systems which are doing text processing but encounter invalid characters. It 

simply replaces them with this character. In UTF-8, this is encoded as 0xEFBFBD.

If a binary file or data stream gets processed by a system expecting text, you can 

sometimes tell this has happened by the proliferation of 0xEFBFBD bytes in the output.

 H.4 Final Thoughts on Unicode
Unicode has a lot of additional terminology to deal with technical aspects of character 

representation and display, which is out of scope for this book. Just know that displaying 

characters from a wide variety of languages, some of which the concept of “character” 

doesn’t quite match up, has a lot of problems which people have spent a lot of time 

trying to solve. This explains most of the weird terminology and intricate details that 

Unicode provides.

 H.5 An ASCII Table
ASCII is sufficiently important that I would be remiss if I did not provide you with a 

standard table of ASCII characters. To use Table H-1, find the character of interest, and 

add the number on the top row to the number in the left column.
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However, even ASCII is not as standard as we might wish. For instance, the way 

that computers encode the end of line varies. On Windows, the standard is to have two 

characters encode the end of the line, a carriage return (CR), which brings you back 

horizontally to the beginning of the line, and a line feed (LF), which takes you vertically 

to the next line. On Unix-based machines, a single LF (also called a newline) was used 

to mark the end of the line and performed both the horizontal and vertical activities. 

Finally, on extremely old Macintoshes, the standard was to use a single carriage return! 

Added to this mess is the question of how many spaces should a horizontal tab represent, 

and that can lead to many arguments and disputes which I will leave to others.1

1 My own opinion, should anyone care, is that tabs should generally be preferred to spaces for 
leading spacing, but that the specific number of spaces they represent should not be fixed, but 
represent a preference set by the user.

Table H-1. Table of ASCII codes in decimal

+0 +1 +2 +3 +4 +5 +6 +7

0 nULL SoH STx eTx eoT enQ ACK BeL

8 BS HTAB LF VTAB FF CR So Si

16 dLe dC1 dC2 dC3 dC4 nAK SYn eTB

24 CAn eM SUB eSC FS GS RS US

32 ! " # $ % & ’

40 ( ) * + , - . /

48 0 1 2 3 4 5 6 7

56 8 9 : ; < = > ?

64 @ A B C d e F G

72 H i J K L M n o

80 p Q R S T U V W

88 x Y Z [ \ ] ^ _

96 ‘ a b c d e f g

104 h i j k l m n o

112 p q r s t u v w

120 x y z { | } deL
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 APPENDIX I

Optimization
While this isn’t a book on optimizing assembly language, I did feel I should include a 

few basic optimization ideas, if only so that you will understand what other people are 

talking about when they talk about optimization. The code in this book is not intended to 

be optimal; it is intended to be explanatory. Therefore, in most cases, I opted to use code 

that was clear to the reader rather than optimal for the processor.

There are many reasons to learn assembly. The one that I have focused on in this 

book is learning assembly to better understand how programming works under the 

hood, so that the choices, limitations, and trade-offs made by various programming 

languages make more sense. Other people write in assembly language because, for 

certain platforms (like embedded processors), assembly language is actually best suited 

to what they are trying to do. However, some people gravitate to assembly language 

because they want to write code that executes really fast.

Optimizing assembly language code is a bit of a black art, as it requires fairly 

intricate knowledge about how the CPU’s instruction-processing architecture works. 

Modern processors are complex beasts with the goal of maximizing every nanosecond 

of operation. Historically, processors listed how many clock cycles each instruction 

took to complete, and if you wanted to optimize your code, the goal would be to simply 

find out how to minimize the number of clock cycles that your code would run. Today, 

it’s not that clock cycles are irrelevant; it’s just that there is a lot more going on in a 

processor that is even more likely to affect your code. This appendix will give you a brief 

introduction to some of the common background ideas that will help you understand 

assembly language code optimization.
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 I.1 Alignment
We will start our discussion with the concept of alignment because it tends to seep 

into a lot of the other pieces of optimization. The processor tends to work with data in 

chunks. Even if you are dealing with individual values, behind the scenes, the processor 

and other parts of the computer are doing things in larger sizes.

For instance, from your code’s perspective, every byte in memory has a separate 

address. I can just as easily load a quadword from memory location 17 as 18 or 19. 

However, for the actual hardware RAM, that is not the case.

The RAM itself actually has a lower resolution than that. For x86-64 systems, data 

is usually grouped in quadword chunks (matching the word size of the processor). 

Practically, this means that if you try to load a quadword from memory, but the 

quadword does not have an address that is divisible by 8 (the number of bytes in a 

quadword), then the processor will actually have to load data from two different physical 

RAM locations and stitch together the result.

What this means is that you will want to pay attention to the data addresses so that 

the address that you want to load values from matches how it is physically stored in 

RAM.

The .balign directive (see Chapter 13) controls data alignment. So, to make sure 

that a value in the .data section is aligned on an 8-byte boundary, you would simply do 

.balign 8 before marking the address with a label and adding your data.

Note that, as we will see, aligning with the data bus is not the only alignment worth 

worrying about!

 I.2 Data Caching
Now let’s take a look at the presence of data caches. When you access main memory, 

your processor puts a request on the data bus for the desired memory. It then has to 

wait for that request to be fulfilled. However, it is often the case that memory that is used 

once will be used again shortly. Therefore, the processor will store the value in one or 

more small caches that are on the processor itself. Then, when that memory is requested 

again, if it finds it in the cache (a cache hit), then it doesn’t need to wait on the memory 

bus to fulfill its memory needs.

Data is transferred from memory to cache in chunks, called cache lines or cache 
blocks. Most x86-64 processors have 64-byte cache lines. Usually what happens is that, 
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when you ask for memory, the processor assumes that you are going to want more than 

just the data you asked for eventually, so it goes ahead and requests more than the data 

needed to fulfill your request. It loads a full cache block from memory and then takes 

that data and adds it to the cache. These cache blocks are aligned to 64 bytes, so it won’t 

necessarily just take the next 64 bytes, but all of the ones that are within the aligned 

block.

Therefore, if you are going to work several values from memory, having that memory 

all near each other helps the processor speed. If you have a large struct you are working 

with, for instance, the parts of the struct that are more likely to be accessed together 

should be stored near each other. This will improve cache performance. Additionally, 

you may even want to align some of your data to the nearest cache block using the 

directive .balign 64.

Cache management is a complex topic because of the sophisticated means that 

processors use to decide what and when to cache. However, the basics of keeping data 

together that is used together generally applies.

 I.3 Pipelining
One of the ways that processors have given themselves a speed boost is by pipelining 

instructions. Modern CPU instructions are complex beasts, requiring a variety of 

operations from the processor, such as instruction fetching, instruction decoding, 

memory access, register access, arithmetic operations, floating-point operations, and 

writing the results of the operation to registers or memory.

Therefore, what modern processors do is divide the instruction up into phases. This 

allows the processor to execute multiple instructions at once. While one instruction is 

being decoded, another instruction is having memory fetched for it. The goal is to keep 

all of the individual “compartments” of the processor busy with different instructions.

In order to do this, the processor has to be able to detect when instructions can 

and can’t be pipelined. If an instruction can’t be pipelined with another instruction, 

that leads to what is known as a pipeline stall. For instance, if the first instruction ends 

by writing to %rax, but the next instruction has to read from %rax, the processor can’t 

pipeline those instructions because the second is dependent on the first finishing. As 

a programmer, you don’t have to worry about this—it’s the processor’s job to keep all 

this straight and not affect the meaning of your code. However, if you program with 

pipelining in mind, it allows you to help the processor execute your code optimally. 
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Essentially, the goal is to keep all parts of the processor busy, and not force it to wait 

around on the results of previous instructions as much as possible.

A superscalar processor takes this a step further and can even start two instructions 

simultaneously, or even execute them out of order (but only if the processor determines 

that this won’t affect the meaning of the code).

 I.4 Instruction Caching and Branch Prediction
In your processor, your code also lives in memory. Just like caching data, the processor 

can also cache the memory for your code, which makes it faster to load the next 

instruction. The processor is also very good at predicting where your program will be 

in the future, so it can prefetch upcoming instructions so that, when it comes time to 

execute them, you aren’t waiting around on memory.

This all works fine until you hit a branch (i.e., a jmp, call, or especially a conditional 

jmp). At a branch, your code is not necessarily going to the next instruction. At a 

conditional branch, the processor isn’t even capable of determining ahead of time which 

branch will be taken for certain. With an indirect jump, even the target of the branch 

may not be known ahead of time. This affects both caching and pipelining, because both 

require the processor to know which instructions is coming next.

Branch prediction allows processors to guess which branch of a conditional 

branch the code is likely to take. It doesn’t need to be correct—it is just faster if it 

is correct. Otherwise, it will cache the wrong instructions and start the pipeline on 

them (known as speculative execution). Then, when the branch doesn’t follow the 

processor’s predictions, the pipeline will stall while the pipeline is cleared and the actual 

instructions are read from memory.

Branch prediction can be done in a variety of ways, from simple (always guess the 

same way) to more sophisticated (keeping track of how often different branches are or 

aren’t taken). The x86 instruction set even allows you to hint to the processor whether 

you think the branch is more likely to be taken or not, though modern processors no 

longer use these hints.

Additionally, when doing indirect jumps, the processor has to do an even tougher 

feat—predict even where the jump might go! Again, modern processors can do this to 

some extent, but it does rely on putting the value into the register sufficiently far before 

the jump that the processor can predict the destination ahead of time and prepare 

accordingly.
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Another point is that it is sometimes helpful for branch targets to be aligned to cache 

lines. This allows more efficient movement of code into your instruction cache when the 

branch is predicted. You can use the .balign directive in the .text section in order to 

have your branch targets be properly aligned. While .balign pads data with zeroes when 

in data sections, it pads instructions with nop (or equivalent) instructions when in the 

.text section.

 I.5 Choosing Instructions and Registers
Instruction choice is also an important subject. Different instructions have a different 

physical size in bytes (see Appendix K), which affects caching. Additionally, different 

instructions can affect pipelining in different ways. For instance, the SSE instructions 

movaps and movapd (see Appendix F) actually perform identical operations, but movaps is 

encoded using fewer bytes and therefore fits better in the instruction cache. As noted in 

Chapter 11, despite the fact that the enter instruction is specifically for setting up stack 

frames, it tends to be slower than just setting them up by hand, despite it taking more 

instructions.

Register choice is also important. Sometimes, for instance, it is better to use a new 

register for a result than reuse and existing register, as it allows better pipelining.

 I.6 Further Resources
There is much more that can be considered when thinking about optimizing assembly 

language. The goal of this chapter is to give a few broad strokes of the kinds of things that 

expert assembly language programmers think about when doing optimization. If this 

is something you find interesting, pursuing it further usually requires simply knowing 

more about the internals of how processors are architected and details about how 

exactly various instructions operate. Much of that is found in reference form from Intel 

and AMD, but also a great collection of resources for understanding optimized assembly 

language has been collected by Agner Fog, available at https://agner.org/.

Additionally, for a book on optimized techniques for programming x86-64 assembly 

language, see Daniel Kusswurm’s Modern x86 Assembly Language.
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 APPENDIX J

A Simplified Garbage 
Collector
In Chapter 17, we discussed garbage collection. However, the code for the garbage 

collector was a little too long for inclusion in the chapter. This appendix has the 

complete code for the garbage collector.

This collector has a lot of limitations, and its primary purpose is to give you an idea 

of how garbage collection works in general. It is unlikely that this particular collector 

would be useful for anything other than demonstration purposes.

Some limitations include

• You have to explicitly initialize the collector at the start of your 

program by calling gc_init.

• You have to explicitly request collection by calling gc_scan.

• All pointers have to be 16 byte aligned.

• All pointers have to exist in the stack or on the heap to be scanned 

properly.

• All pointers have to be pointers to the start of a section of memory to 

be scanned properly.

• This only works with a single stack (and therefore only single- 

threaded code).

• This doesn’t work with any other allocator.

• During the scan, this implementation temporarily doubles allocated 

memory.
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The code is organized as follows:

• gc_defs.s contains the .equ directives needed for the rest of the 

program.

• gc_globals.s contains the global variables shared by all the garbage 

collection code.

• gc_init.s contains the code for the gc_init function, which 

initializes the garbage collector. This saves the location of the 

beginning of the stack and initializes the beginning/end of the heap.

• gc_allocate.s contains the allocator function, gc_allocate, which 

works pretty much like the rest of the allocator functions we have 

encountered in this book. It also zeroes out the memory so that we 

don’t have any accidental pointers being referenced.

• gc_scan.s contains the garbage collection function, gc_scan. The 

details of this function are further divided into other files:

 – gc_scan_init.s contains the code to initialize the scan. It records the 

current stack position and then allocates enough memory to store the 

potential pointer list.

 – gc_unmark_all.s this marks all allocations as being “unused.” They will 

then be remarked as used when pointers to them are detected.

 – gc_scan_memory.s this takes a location in memory and the size of that 

memory and scans it for potential pointers to the heap.

 – gc_scan_base_objects.s scans the base objects—the stack and the data 

sections (.data, .rodata, and .bss)—for potentially valid pointers.

 – gc_walk_pointers.s walks through the pointer list and checks each pointer 

to see if the pointer points to memory that is (a) a valid heap allocation and 

(b) is currently unmarked. If so, it marks the memory as being in use and 

then scans the memory for more pointers.

 – gc_is_valid_ptr.s contains code for determining if a given pointer actu-

ally points to the start of a heap memory allocation.
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 – gc_scan_cleanup.s returns the memory that was allocated for list keeping.

• gc_test.c does a short test showing the usage of the garbage 

collector in C code.

Again, this is not meant to be optimal in any way, or even ready for production (or 

even non-production) use. It is merely meant to give you a concrete feeling for the way 

that garbage collectors can operate.

gc_defs.s

.globl BRK_SYSCALL

.globl HEADER_SIZE, HDR_IN_USE_OFFSET, HDR_SIZE_OFFSET

.equ BRK_SYSCALL, 12

.equ HEADER_SIZE, 16

.equ HDR_IN_USE_OFFSET, 0

.equ HDR_SIZE_OFFSET, 8

gc_globals.s

.include "gc_defs.s"

.globl heap_start, heap_end, stack_start, stack_end

.globl pointer_list_start, pointer_list_end, pointer_list_current

.section .data

heap_start:

    .quad 0

heap_end:

    .quad 0

stack_start:

    .quad 0

stack_end:

    .quad 0

.equ pointer_list_start, heap_end # These are the same

pointer_list_end:

    .quad 0

pointer_list_current:

    .quad 0
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gc_init.s

.globl gc_init

.section .text

gc_init:

    # Assume %rbp has the previous stack frame,

    # and is properly aligned

    movq %rbp, stack_start

    # Save the location of the heap

    movq $BRK_SYSCALL, %rax

    movq $0, %rdi

    syscall

    movq %rax, heap_start

    movq %rax, heap_end

    ret

gc_allocate.s

.include "gc_defs.s"

.globl gc_allocate

.section .text

# Register usage:

#  - %rdx - size requested

#  - %rsi - pointer to current memory being examined

#  - %rcx - copy of heap_end

allocate_move_break:

    # Old break is saved in %r8 to return to user

    movq %rcx, %r8

    # Calculate where we want the new break to be

    # (old break + size)

    movq %rcx, %rdi

    addq %rdx, %rdi

    # Save this value

    movq %rdi, heap_end
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    # Tell Linux where the new break is

    movq $BRK_SYSCALL, %rax

    syscall

    # Address is in %r8 - mark size and availability

    movq $1, HDR_IN_USE_OFFSET(%r8)

    movq %rdx, HDR_SIZE_OFFSET(%r8)

    # Actual return value is beyond our header

    addq $HEADER_SIZE, %r8

    movq %r8, %rax

    ret

gc_allocate:

    enter $0, $0

    pushq $0   # Keep stack aligned

    pushq %rdi # Save for later

    call gc_allocate_internal

    # Zero out the block to eliminate false pointers

    movq %rax, %rdx # Save original pointer

    popq %rcx       # Get the size of the block

zeroloop:

    movb $0, (%rdx)

    incq %rdx

    loop zeroloop

    leave

    ret

gc_allocate_internal:

    # Save the amount requested into %rdx

    movq %rdi, %rdx

    # Actual amount needed is actually larger

    addq $HEADER_SIZE, %rdx

    # Align %rdx to a 16-byte boundary

    addq $16, %rdx                   # Advance 16 bytes

    andq $0xfffffffffffffff0, %rdx   # Clear last bits
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    # Put heap start/end in %rsi/%rcx

    movq heap_start, %rsi

    movq heap_end, %rcx

allocate_loop:

    # If we have reached the end of memory

    # we have to allocate new memory by

    # moving the break.

    cmpq %rsi, %rcx

    je allocate_move_break

    # is the next block available?

    cmpq $0, HDR_IN_USE_OFFSET(%rsi)

    jne try_next_block

    # is the next block big enough?

    cmpq %rdx, HDR_SIZE_OFFSET(%rsi)

    jb try_next_block

    # This block is great!

    # Mark it as unavailable

    movq $1, HDR_IN_USE_OFFSET(%rsi)

    # Move beyond the header

    addq $HEADER_SIZE, %rsi

    # Return the value

    movq %rsi, %rax

    ret

try_next_block:

    # This block didn't work, move to the next one

    addq HDR_SIZE_OFFSET(%rsi), %rsi

    jmp allocate_loop

gc_scan.s

.globl gc_scan

.section .text

# Parameters - none
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# Registers - none

gc_scan:

    enter $0, $0

    # Setup space for pointer list

    call gc_scan_init

    # Unmark all objects

    call gc_unmark_all

    # Get initial set of pointers from base objects

    # (stack, data)

    call gc_scan_base_objects

    # Walk pointer list

    call gc_walk_pointers

    # Give back space from pointer list

    call gc_scan_cleanup

    leave

    ret

gc_scan_init.s

.globl gc_scan_init

# Make sure we *have* an rodata section, even if nothing is in there

.section .rodata

.section .text

gc_scan_init:

    enter $0, $0

    # Mark end of stack

    movq %rsp, stack_end

    # Calculate max memory we could need for pointer storage into %rdi

    # - Stack size

    movq stack_start, %rdi

    subq %rsp, %rdi

    # - Data section size

    movq $.rodata, %rdx

Appendix j  A Simplified GArbAGe ColleCtor



312

    andq $0xfffffffffffffff8, %rdi   # Align to 8-byte boundary

    movq $_end, %rcx

    subq %rdx, %rcx

    addq %rcx, %rdi

    # - Heap size

    movq heap_end, %rdx

    subq heap_start, %rdx

    addq %rdx, %rdi

    # The pointer space will be that many bytes

    # beyond the current heap end.

    movq pointer_list_start, %rdx

    addq %rdx, %rdi

    movq %rdi, pointer_list_end

    # pointer_list_start and _current start the same

    movq %rdx, pointer_list_current

    # Move the current break to this point

    # (new break already in %rdi)

    movq $BRK_SYSCALL, %rax

    syscall

    leave

    ret

gc_unmark_all.s

.include "gc_defs.s"

.globl gc_unmark_all

.section .text

gc_unmark_all:

    enter $0, $0

    movq heap_start, %rcx

    movq heap_end, %rdx
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loop:

    cmpq %rcx, %rdx

    je finish

    movq $0, HDR_IN_USE_OFFSET(%rcx)

    addq HDR_SIZE_OFFSET(%rcx), %rcx

    jmp loop

finish:

    leave

    ret

gc_scan_base_objects.s

.globl gc_scan_base_objects

.section .rodata

.section .text

gc_scan_base_objects:

    enter $0, $0

    # the 'end' of the stack is the beginning

    # of the memory of the stack

    movq stack_end, %rdi

    # size is in %rsi

    movq stack_start, %rsi

    subq %rdi, %rsi

    call gc_scan_memory

    # .rodata is the first data segment

    movq $.rodata, %rdi

    andq $0xfffffffffffffff8, %rdi   # Align to an 8-byte boundary

    # _end marks the end of data

    movq $_end, %rsi

    subq %rdi, %rsi

    call gc_scan_memory

    leave

    ret
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gc_walk_pointers.s

.include "gc_defs.s"

.globl gc_walk_pointers

.equ LCL_SAVED_RBX, -16

gc_walk_pointers:

    enter $16, $0

    # %rbx is supposed to be preserved - save it

    movq %rbx, LCL_SAVED_RBX(%rbp)

    # get initial value of `current' pointer

    movq pointer_list_start, %rbx

loop:

    # End of the list?

    cmpq %rbx, pointer_list_current

    je finished

    # Get the next potential pointer

    movq (%rbx), %rdi

    # Skip if already checked/marked

    cmpq $1, HDR_IN_USE_OFFSET - HEADER_SIZE(%rdi)

    je continue

    # Is it valid?

    call gc_is_valid_ptr

    cmpq $1, %rax

    jne continue

    # Valid pointer

    # Mark as valid

    movq (%rbx), %rdi

    movq $1, HDR_IN_USE_OFFSET - HEADER_SIZE(%rdi)

    # Scan contents of memory area for other pointers

    movq HDR_SIZE_OFFSET - HEADER_SIZE(%rdi), %rsi
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    subq $HEADER_SIZE, %rsi

    call gc_scan_memory

continue:

    # Next pointer

    addq $8, %rbx

    jmp loop

finished:

    # Restore %rbx

    movq LCL_SAVED_RBX(%rbp), %rbx

    leave

    ret

gc_is_valid_ptr.s

.include "gc_defs.s"

.globl gc_is_valid_ptr

.section .text

gc_is_valid_ptr:

    enter $0, $0

    # %rdi has the pointer to check

    # Set %rcx to the first embedded pointer

    movq heap_start, %rcx

loop:

    leaq HEADER_SIZE(%rcx), %rax

    cmpq %rax, %rdi

    # It is the address - yay!

    je valid_ptr

    # We passed the address without finding it - boo!

    jb invalid_ptr

    # haven't gotten there yet - keep going

    # Find the location of the next pointer and loop

    addq HDR_SIZE_OFFSET(%rcx), %rcx

    jmp loop
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invalid_ptr:

    movq $0, %rax

    leave

    ret

valid_ptr:

    movq $1, %rax

    leave

    ret

gc_scan_cleanup.s

.globl gc_scan_cleanup

gc_scan_cleanup:

    # Done with the pointer list - move break back to where it was

    movq $BRK_SYSCALL, %rax

    movq heap_end, %rdi

    syscall

A short example program which shows the garbage collector in action is here:

gc_test.c

#include <stdio.h>

void *gc_allocate(int);

void gc_scan();

void gc_init();

volatile void **foo;

volatile void **goo;

int main() {

    gc_init();

    foo = gc_allocate(500);

    fprintf(stdout, "Allocation 1: %x\n", foo);

    goo = gc_allocate(200);

    foo[0] = goo; // Hold reference to goo so it won't go away

    fprintf(stdout, "Allocation 2: %x\n", goo);
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    gc_scan();

    goo = gc_allocate(300);

    fprintf(stdout, "Allocation 3: %x\n", goo);

    gc_scan();

    goo = gc_allocate(200);

    fprintf(stdout, "Allocation 4: %x\n", goo);

    gc_scan();

    // This will be put in  the same spot as allocation 3

    goo = gc_allocate(200);

    fprintf(stdout, "Allocation 5: %x\n", goo);

    gc_scan();

    foo = gc_allocate(500); //  No longer holding reference to allocations 1 

& 2

    fprintf(stdout, "Allocation 6: %x\n", foo);

    gc_scan();

    // This will be put in the same spot as allocation 1

    goo = gc_allocate(10);

    fprintf(stdout, "Allocation 7: %x\n", goo);

    // This will be put in the same spot as allocation 2

    foo = gc_allocate(10);

    fprintf(stdout, "Allocation 8: %x\n", foo);

}

You can compile all of this together and run it with

gcc gc_*.* -o gc_test

./gc_test
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 APPENDIX K

Going to an Even  
Lower Level
This book has been focused on assembly language programming. For most computer 

programmers, assembly language is really the lowest-level language they will ever need 

to deal with. Nonetheless, for those interested in going deeper, here we will give a small 

taste of what is beneath.

 K.1 Instruction Formats
Remember that, in computers, everything is stored as a number. Everything. That 

includes the instructions that operate the computer. When you assemble your files, it is 

converting the operations you give (often called mnemonics) into numbers to represent 

those commands.

In the x86-64 instruction set architecture, these instructions have a variable size. 

Some instructions are a single byte long, while others can be up to 15 bytes long. The 

format is a little strange due to the long history of the x86 platform, originating as a 16-bit 

platform, going through a stage as a 32-bit platform, and winding up today as a 64-bit 

platform, all while maintaining backward compatibility throughout.

Instructions are geared around opcodes, which are numbers that represent an 

instruction. The opcodes don’t exactly match the mnemonics, but they are close. 

Occasionally, a mnemonic will encode multiple opcodes based on the operands.

The basic format is as follows:

 1. Prefixes (1 byte for each prefix)

 2. Opcode (1–3 bytes)

 3. ModR/M (1 byte if required by the opcode)
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 4. SIB (1 byte if required by the opcode)

 5. Displacement (1, 2, 4, or 8 bytes if required by the opcode)

 6. Immediate (1, 2, 4, or 8 bytes if required by the opcode)

Prefixes modify the operation of the instruction, though, in some cases, the prefix 

is considered more or less part of the instruction itself. We have already seen prefixes 

before with the rep family of prefixes. These are encoded before the block instructions to 

cause them to repeat (see Chapter 9). rep and repe are encoded as a prefix value of 0xf3 

and repne is encoded as 0xf2. rep and repe share a prefix because they modify different 

instructions.

An important prefix that we have not covered in this book is the LOCK prefix (0xf0). 

This can be added to an instruction to tell the processor that it alone should have a cache 

line for the memory location referenced in the instruction. This is used to maintain 

synchronization among multiple CPUs. You can add the lock prefix in assembly 

language to any instruction dealing with memory to be sure that only you have access to 

that memory for the duration of the instruction.

The other set of prefixes is known as the REX family of prefixes, which causes 

legacy instructions (those that were available in the 32-bit platform) to work as 64-bit 

instructions. The assembler automatically adds the REX prefix to the instruction when 

needed. The format of the REX prefixes is somewhat complicated, so we won’t go into the 

details. However, the REX prefix always goes immediately before the instruction.

After the prefixes comes the opcode. The opcode is 1–3 bytes long, and it tells the 

processor which instruction it should be doing. These don’t exactly translate to the 

instructions we have been doing, but they do so loosely. For instance, the opcodes for 

the mov family of instructions vary depending on both the size and the arguments. For 

instance, the opcode for the movl instruction is 0x89 when the source is a register, but 

is 0x8b when the source is memory (either opcode can be used for register-to-register 

moves) and is 0xb8 when the source is an immediate-mode value. For the equivalent 

movq instructions, the same opcodes are used in those cases, but an appropriate REX 

prefix is added. However, if you were to be moving individual bytes, different opcodes 

are used entirely.

The ModR/M byte tells the processor which registers are being used and/or what 

addressing modes are being used. Its format is both tricky and variable, so we won’t 

cover it here.
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The SIB (scale-index-base) byte is used when doing indexed addressing modes. It 

encodes within it which register is the base register, which register is the index register, 

and which register is the base register.

You might have noticed that having single bytes to represent these attributes doesn’t 

sound like enough to specify all the combinations of registers you might want to use. The 

variations of the REX prefix actually can extend these bytes further to express the larger 

set of registers available on x86-64 platforms.

After the ModR/M and SIB bytes is the displacement, which is only used if needed, 

and can be 1, 2, or 4 bytes long. The displacement is the fixed value used in the various 

addressing modes. It may encode an entire address (for direct addressing), or it may be a 

displacement to a base pointer address.

Last, if needed, is an immediate-mode value, which can be 1, 2, or 4 bytes long. For 

instance, if doing movq $7, %rax, the 7 would be encoded here.

Let us look at a simple instruction and see how it is encoded. The instruction is movb 

$8, %ah. In this instruction, there are actually different opcodes for each destination 

register, starting with 0xb0 for using %al. So this gets encoded as 0xb4 0x08.

A more complex instruction is movq $8, %rbx. This is encoded as

0x48 0xc7 0xc3 0x08 0x00 0x00 0x00

The first value (0x48) is the appropriate REX prefix (since we are dealing with 64-bit 

values). The second value is the opcode (0xc7), which is an even different opcode for 

moving values. This one allows for shorter values that then get sign extended into the 

full register, so that you can encode it in fewer bytes. The 0xc3 is the ModR/M byte which 

specifies (among other things) that the instruction is using the %rbx register. Finally, the 

0x08 0x00 0x00 0x00 is the little-endian encoding of the value 8 as a 4-byte immediate 

value.

In any case, the details of how instructions are encoded are beyond the scope of this 

book, but I wanted to give you at least a feel for it.

 K.2 Electronics
Down even lower, everything in computers is implemented with electrical signals. While 

I’ve rarely (if ever) had the need to understand the underlying electrical circuits behind 

the computer in order to program well, it is nonetheless a fascinating area to look into.
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Everything on the computer is ultimately implemented through a series of 

microchips, which each hold a plethora of logic gates, which are each ultimately 

made up of transistors. The design of a computer, as you might have guessed, is very 

complicated. Nonetheless, if this is of interest to you, let me suggest some books to help 

you understand this part of computing (which is really electrical engineering) better:

• Electronics for Beginners by Jonathan Bartlett (yes, that’s me!): This 

book is a straightforward introduction to working with electronic 

circuits for the absolute beginner. While it is for beginners, it actually 

has a significant amount of material that is targeted toward someone 

aiming to be a professional.

• The Art of Electronics by Paul Horowitz: This book essentially starts 

where Electronics for Beginners leaves off. Every professional I know 

of has a copy of this book. It details many important circuits, why they 

are useful, and caveats to their usage.

• Build Your Own Computer: From Scratch by David Whipple: 

This book actually shows you how to design your own simplified 

CPU. This uses a special piece of hardware, an FPGA (field 

programmable gate array), which is essentially like a microchip that 

is rewirable, to allow you to build a fully functioning processor from 

scratch! If you want to get even more into the messy details, Ben Eater 

has a YouTube video on how to make a simple 8-bit CPU using just 

components on breadboards at https://eater.net/8bit/. Another 

good book on this topic is The Elements of Computing Systems: 

Building a Modern Computer from First Principles by Noam Nissan 

and Shimon Schocken.

• Computer Organization and Design by David Patterson and John 

Hennessy or Computer Architecture: A Quantitative Approach by 

John Hennessy: These books are the standard for understanding 

how CPUs work at the organizational level. They discuss caching, 

parallelism, instruction set architectures, and a variety of other 

important topics in the design of CPU architecture. The former book 

is a more general approach, while the latter book contains many 

more technical details.
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